
1/3

September 9, 2020

The macros for declaring COM interfaces, revisited: C
version

devblogs.microsoft.com/oldnewthing/20200909-00

Raymond Chen

Quite some time ago, I covered The macros for declaring and implementing COM interfaces.

I spelled out the rules, but I didn’t go into much detail as to how the rules lead to the desired

results.

There have also been some changes to the rules in the intervening years, so this mini-series

will be a refresh of the old rules.

#undef INTERFACE

#define INTERFACE ISample2

DECLARE_INTERFACE_IID_(ISample2, ISample,

 "5675B786-7BAC-4EA2-A020-F4E7A15E2073")

{

 BEGIN_INTERFACE

 /*** IUnknown methods ***/

 STDMETHOD(QueryInterface)(THIS_ REFIID riid, void **ppv) PURE;

 STDMETHOD_(ULONG,AddRef)(THIS) PURE;

 STDMETHOD_(ULONG,Release)(THIS) PURE;

 /*** ISample methods ***/

 STDMETHOD(Method1)(THIS) PURE;

 STDMETHOD_(int, Method2)(THIS) PURE;

 /*** ISample2 methods ***/

 STDMETHOD(Method3)(THIS_ int iParameter) PURE;

 STDMETHOD_(int, Method4)(THIS_ int iParameter) PURE;

 END_INTERFACE

};

When this code is compiled by a C compiler, the macros expand as follows:

https://devblogs.microsoft.com/oldnewthing/20200909-00/?p=104198
https://devblogs.microsoft.com/oldnewthing/20041005-00/?p=37653

2/3

/* DECLARE_INTERFACE_IID_(ISample2, ISample, "...") */

typedef struct ISample2

{

 struct ISample2Vtbl* lpVtbl;

} ISample2;

typedef struct ISample2Vtbl ISample2Vtbl;

struct ISample2Vtbl

{

 /* BEGIN_INTERFACE */

 void* b; /* only on PowerPC */

 /*** IUnknown methods ***/

 /* STDMETHOD(QueryInterface)(THIS_ REFIID riid, void **ppv) PURE; */

 HRESULT (__stdcall* QueryInterface)(ISample2* This, REFIID riid, void** ppv);

 /* STDMETHOD_(ULONG,AddRef)(THIS) PURE; */

 ULONG (__stdcall* AddRef)(ISample2* This);

 /* STDMETHOD_(ULONG,Release)(THIS) PURE; */

 ULONG (__stdcall* Release)(ISample2* This);

 /*** ISample methods ***/

 /* STDMETHOD(Method1)(THIS) PURE; */

 HRESULT (__stdcall* Method1)(ISample2* This);

 /* STDMETHOD_(int, Method2)(THIS) PURE; */

 int (__stdcall* Method2(ISample2* This);

 /*** ISample2 methods ***/

 /* STDMETHOD(Method3)(THIS_ int iParameter) PURE; */

 HRESULT (__stdcall* Method3)(int iParameter);

 /* STDMETHOD_(int, Method4)(THIS_ int iParameter) PURE; */

 int (__stdcall* Method4)(int iParameter);

 /* END_INTERFACE */

};

When compiled as C, the interface is formally defined as a structure consisting only of a

vtable. The vtable is a sequence of function pointers, one for each virtual method.

The parameters to the DECLARE_ INTERFACE_ IID_ macro are the interface being

declared, its base interface, and the UUID for the interface. There’s also a version without the

trailing underscore: DECLARE_ INTERFACE_ IID . That version is for the case where there

is no base interface. In practice, you will never use that version because every interface

derives from IUnknown . Basically, the only interface that would use the no-base-interface

version is IUnknown itself.

3/3

There’s also a no-IID version of the macro: DECLARE_ INTERFACE_ (and

DECLARE_ INTERFACE for the one interface with no base interface). If you use this version,

then you won’t be able to say __uuidof(ISample2) in the C++ expansion to obtain the IID

of the interface. We’ll see more about this when we dig into the C++ expansion.

The BEGIN_ INTERFACE macro does nothing on most systems, but on PowerPC, it

generates a mysterious void* at the start of the vtable. I don’t know why it’s there, but

apparently that was part of the PowerPC ABI for vtables. A common mistake is forgetting the

BEGIN_ INTERFACE and END_ INTERFACE macros. You don’t notice until somebody tries

to use your header file on a PowerPC.

Notice that all the methods of the base classes need to be redeclared in the derived class, so

that the vtable is laid out properly. A common mistake is to omit the base interface methods,

and you get away with it when compiling as C++ because the base interface methods are

inherited. But C doesn’t have inheritance. You have to write it out.

The STDMETHOD and STDMETHOD_ macros generate a function pointer structure member,

corresponding to a C++ virtual method, using the calling convention for COM methods,

which happens to be __stdcall . The STDMETHOD macro is for methods returning

HRESULT , and the STDMETHOD_ macro is for methods that return something else.

The PURE macro expands to nothing. It’s used by the C++ expansion, which we’ll cover

later.

The THIS and THIS_ macros expand to the This parameter declaration, corresponding

to the hidden this parameter in C++. For methods with no parameters, use THIS as the

single parameter. For methods that have parameters, use THIS_ before the first parameter.

The END_ INTERFACE macro expands to nothing. There hasn’t yet been an architecture that

required special treatment of the end of the vtable. But the macro is there in case some future

architecture ends up needing something to go there.

Next time, we’ll look at how these macros expand in C++.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

