
1/4

September 7, 2020

C++/WinRT injects additional constructors into each
runtime class

devblogs.microsoft.com/oldnewthing/20200907-00

Raymond Chen

C++/WinRT treats runtime classes similar to C# reference types. Copying a C++/WinRT

runtime class copies a reference to the underlying object. You can null out the reference by

assigning nullptr to it.

On the other hand, C++ constructors don’t use the new keyword; the new keyword has a

different meaning which doesn’t apply to Windows Runtime classes.

This means that C++ constructors have to do double-duty: They can be used to construct new

objects, or they can be used as copy constructors or conversion constructors.

Constructors that actually, y’know, create new objects are represented as traditional C++

constructors.

C++/WinRT also injects additional constructors into each runtime class. One is the copy

constructor, and another is the conversion constructor from nullptr .

If you had a class that has a default constructor, or could construct from an integer, you

would write it something like this:

class Thing

{

public:

 Thing();

 explicit Thing(int capacity);

};

The C++/WinRT version looks similar, but with additional constructors:

https://devblogs.microsoft.com/oldnewthing/20200907-00/?p=104181

2/4

class Thing

{

public:

 Thing();

 explicit Thing(int capacity);

 Thing(std::nullptr_t);

 Thing(Thing const&) = default;

 Thing(const&&) = default;

};

(If you look at the C++/WinRT headers, you won’t see the default constructors. They simply

are generated automatically by the compiler.)

The first injected constructor is the conversion constructor from nullptr . The second and

third are the copy and move copy constructors, which copy or move the reference to the

underlying object.

// default constructor, creates an object

Thing t1;

// explicit constructor, creates an object

Thing t2{ 42 };

// conversion from nullptr, creates an empty reference

Thing t3{ nullptr };

Thing t4 = nullptr;

// copy constructor, copies reference to object

Thing t5{ t1 };

Thing t6 = t1;

// move copy constructor, moves reference to object

Thing t5{ std::move(t1) };

Thing t6 = std::move(t1);

This conflation of reference construction and object construction can be confusing. For

example, you might forget that the default constructor creates an object:

class Something

{

private:

 Thing m_thing;

};

This constructs a brand new Thing object when the Something constructs. If you wanted

to start with an empty reference, you need to initialize m_thing with nullptr .

3/4

class Something

{

private:

 Thing m_thing = nullptr;

};

When designing your own runtime classes, you may want to avoid having a constructor

whose single parameter is the same as the type being constructed, because that would

conflict with the copy constructor.

runtimeclass Thing

{

 Thing(Thing parent);

}

This would result in two conflicting projections into C++/WinRT. Would

// assuming t1 is a Thing

Thing t2{ t1 };

be an attempt to construct a brand new Thing , using t1 as the constructor parameter? Or

would it be an attempt to copy the reference to the same underlying Thing object?

You can work around this by using a static function that acts like a constructor.

runtimeclass Thing

{

 static Thing CreateFromParent(Thing parent);

}

Or by changing it to a method on the parent.

runtimeclass Thing

{

 Thing CreateChild();

}

There is also an ambiguity if you have a constructor that takes a single reference type, and it’s

possible for that reference to be null.

runtimeclass ChildThing

{

 // parent=null means create parentless

 ChildThing(ParentThing parent);

}

In this case, you might be tempted to create a new parentless ChildThing object by saying

this:

ChildThing child{ nullptr };

4/4

Unfortunately, this actually invokes the conversion constructor from nullptr . To construct

a new parentless ChildThing , you need to write

ChildThing child{ ParentThing{ nullptr } };

A cleaner workaround is to provide a default constructor that creates a parentless

ChildThing .

runtimeclass ChildThing

{

 ChildThing(); // create parentless

 ChildThing(ParentThing parent); // creates with parent

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

