
1/2

September 4, 2020

Rough edges in the when_all coroutine, part 2:
Overloaded comma operator

devblogs.microsoft.com/oldnewthing/20200904-00

Raymond Chen

Last time, we looked at a problematic edge case in our when_all coroutine: The empty

parameter list.

There’s another edge case that can cause trouble, and that’s the case where the comma

operator itself has been overloaded.¹

struct S

{

 void Detonate();

 S operator,(S right) { Detonate(); return right; }

};

struct async_s : std::experimental::suspend_never

{

 S await_resume() { return {}; }

};

when_all(async_s(), async_s()); // kaboom

We start by defining a type S that has a comma operator. When you comma two S objects

together, the first one explodes.

Next, we define an awaitable object async_s : When you co_await , an S comes out.

And then we pass two of these objects to when_all . The expectation is that the when_all

awaits the two objects, throws away the results, and returns.

Instead, what happens is that the S object explodes.

What went wrong is that our fold expression expanded to

https://devblogs.microsoft.com/oldnewthing/20200904-00/?p=104172
https://devblogs.microsoft.com/oldnewthing/20200903-00/?p=104160

2/2

IAsyncAction when_all(async_s v1, async_s v2)

{

 (co_await v1, co_await v2);

 co_return;

}

The intent of the comma in the fold expression was to throw away the left-hand operand,

leaving the last surviving operand to be thrown away by the statement-expression. But

thanks to the custom comma operator, it actually causes the left-hand operand to explode.

To suppress any custom comma operators, we can cast the result of the co_await to

void . Since you cannot overload the comma operator for void , this forces the use of the

default comma operator, so we just comma-combine a bunch of void s, which is harmless.

template <typename... T>

Windows::Foundation::IAsyncAction when_all(T... async)

{

 (void(co_await async), ...);

 co_return;

}

Here is the PR that fixes the empty parameter list and comma operator issues, and a follow-

up.

Bonus chatter: We could also have used a right fold:

 (co_await async, ..., void());

which expands to

 (co_await v1, (co_await v2, void()));

But I think casting away the value is simpler.

¹ Shame on you.

Raymond Chen

Follow

https://github.com/microsoft/cppwinrt/pull/645
https://github.com/microsoft/cppwinrt/pull/647
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

