
1/2

September 1, 2020

More on trivial functions like CopyRect and EqualRect
devblogs.microsoft.com/oldnewthing/20200901-00

Raymond Chen

Some time ago, I discussed trivial functions like CopyRect and EqualRect and why they even

exist at all.

Piotr Siódmak wondered if you could just use memcpy to copy a rectangle. “It’s already there

and probably already used by other parts of code, so it’s 0 bytes of overhead.”

One of the features of CopyRect and friends is that they all take far pointers to RECT . This

means that you can use them to manipulate rectangles received from the operating system,

even if your program uses the small or medium memory model.

The memcpy version of CopyRect would actually be _fmemcpy in order to support far

pointers. And since it’s a C runtime function, it would follow the __cdecl calling

convention, which is caller-clean. And you would have to pass an extra parameter to

represent the size of a rectangle.

b8 08 00 mov ax, 8 ; sizeof(RECT)¹

50 push ax

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

53 push bx

06 push es

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

53 push bx

06 push es

9a xx xx xx xx call _fmemcpy

83 c4 0a add sp, 10 ; clean the stack

This adds seven bytes to the code size.

But it’s worse than that. You also have to segment-tune your _fmemcpy function: Which

functions are you going to put into a single segment for code swapping purposes? Maybe

copying rectangles is something your program does constantly, so you want to keep it in your

“hot” segment. Or maybe it’s something you do only occasionally, in which case you would

put it in one of the more rarely-used segments. It means that when you do get around to

copying a rectangle, you may have to pause to load the _fmemcpy function off the floppy

drive.

https://devblogs.microsoft.com/oldnewthing/20200901-00/?p=104147
https://devblogs.microsoft.com/oldnewthing/20200224-00/?p=103472
https://devblogs.microsoft.com/oldnewthing/20200224-00/?p=103472#comment-136252
https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012
https://devblogs.microsoft.com/oldnewthing/20131008-00/?p=3003

2/2

And since the function is linked into your program, it means that if you are running five

programs, each of them will have its own copy of _fmemcpy , with various other functions

coming along for the ride in the same segments.

Why not just use the copy that the window manager already has?

The rectangle functions are in a “fixed” segment in the window manager, meaning that it is

permanently loaded and cannot get swapped out. Calling it is basically free. You will never

incur a segment swap by calling CopyRect or EqualRect . No need to create five private

copies of a function and swap them in and out. Just use the one copy that the system already

provides. That’ll help you fit your program into 256KB of memory.

Bonus chatter: The CopyRect function is also more efficient than a general-purpose

_fmemcpy since it knows that it’s copying exactly eight bytes. The _fmemcpy function

needs to support arbitrary-sized memory blocks, so it will spend extra time preparing for a

block copy operation for maximum speed, even though that speed gain is not realized on

such small copies.

¹ Why not use the two-byte push 8 instruction? Because this is 8086 code, and the two-

byte “push sign-extended 8-bit immediate” instruction didn’t exist. It was first available in

the 80186 processor.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

