
1/4

August 28, 2020

How do I convert from the C++/WinRT projection type to
the C++/WinRT implementation type?

devblogs.microsoft.com/oldnewthing/20200828-00

Raymond Chen

Last time, we looked at converting from the C++/WinRT implementation type to the

corresponding C++/WinRT projection type. Going from the projection back to the

implementation is a little trickier and relies on your own vigilance. There’s no a priori

guarantee that the projected pointer actually refers to your implementation. For example, if

all you have is an IInspectable , that could be anybody. Even if you have a concrete

Sample::Class , the projected type could have been implemented by somebody else.¹

But assume that you have other ways of knowing that the IInspectable or other projected

type really is backed by the implementation you claim. Typically, it’s because you put it there

yourself originally.

// Go from the projection to the implementation.

implementation::Class*p = get_self<implementation::Class>(o);

The get_self function assumes that the thing you’re providing is backed by the

implementation you specify, and it returns a pointer to the that implementation type. The

lifetime of the pointer is controlled by the projected object you obtained the pointer from, so

you now have to keep both o and p around, which can be a hassle.

There’s a nasty gotcha with get_self beyond the fact that you had better have the right

implementation: You also have to have the right interface!

If the object you pass is an interface, then the implementation cannot implement that

interface multiple times, or there will be an ambiguity over how to convert from that

interface to the implementation. This is a problem in standard C++ as well:

struct B {};

struct D1 : B {};

struct D2 : B {};

struct C : D1, D2 {};

C* c;

B* b = c; // error: 'B' is an ambiguous base of 'C'

https://devblogs.microsoft.com/oldnewthing/20200828-00/?p=104138
https://devblogs.microsoft.com/oldnewthing/20200827-00/?p=104133

2/4

The C++/WinRT get_self function is more restrictive than C++ casts, because it’s a

conversion, not a cast. The thing you’re converting from must be listed as one of the

implemented interfaces.

struct C : implements<C, ISomething>

{

};

IInspectable something;

C* p = get_self<C>(something);

// error: 'static_cast': cannot convert from

// winrt::impl::producer<D, I, void> *' to 'D *'

// with D = C, I = IInspectable

You can’t convert from IInspectable since the class C doesn’t list IInspectable as

one of its explicitly-implemented interfaces. (It is an implicitly-implemented interface

because IInspectable is the base of all Windows Runtime interfaces.)

You can avoid this problem by converting the IInspectable to an explicitly-implemented

interface first.

C* p = get_self<C>(something.as<ISomething>());

To avoid having to remember what interfaces your object implements, you can use the

default_interface helper template type.

C* p = get_self<C>(something.as<winrt::default_interface<C>>());

But wait, you’re not out of the woods yet.

If you mistakenly implement IInspectable as well as a Windows Runtime interface, then

you run into another ambiguity: If recovering the object from an IInspectable , is the

IInspectable the explicitly-implemented IInspectable or the implicitly-implemented

IInspectable that came along for the ride as a base class of the Windows Runtime

interface?

struct C : implements<C, ISomething, IInspectable>

{

};

IInspectable something;

C* p = get_self<C>(something); // 50% chance of working

C++/WinRT assumes that you gave it the IInspectable that came from the explicitly-

implemented interface, which has a 50% chance of being correct. If it’s incorrect, you will get

the wrong pointer back and corrupt memory and be very sad.

3/4

The best way to fix is to “stop holding it wrong”. Remove the redundant IInspectable

from your list of explicitly-implemented interfaces.

A less-good (but still effective) fix is to use the default interface trick we saw above.

C* p = get_self<C>(something.as<winrt::default_interface<C>>());

Note that the value returned by get_self is a raw pointer. The lifetime of the object is still

controlled by whatever you passed to get_self . This can get annoying, since you now have

to carry two things around: You need to carry the raw pointer so you can access your

implementation, and you need to carry the original object that manages the lifetime. Here’s a

helper function which converts the projected type into a reference-counted com_ptr . That

way, you don’t have to carry two objects around. While I’m at it, I’ll fix the nasty gotcha

(though really, you should just fix it by removing the redundant IInspectable).

template<typename D, typename T>

winrt::com_ptr<D> as_self(T&& o)

{

 winrt::com_ptr<D> result;

 if constexpr (std::is_same_v<std::remove_reference_t<T>,

 winrt::Windows::Foundation::IInspectable>)

 {

 auto temp = o.as<winrt::default_interface<D>>();

 result.attach(winrt::get_self<D>(temp));

 winrt::detach_abi(temp);

 }

 else if constexpr (std::is_rvalue_reference_v<T&&>)

 {

 result.attach(winrt::get_self<D>(o));

 winrt::detach_abi(o);

 }

 else

 {

 result.copy_from(winrt::get_self<D>(o));

 }

 return result;

}

The basic idea is to use get_self to obtain the raw pointer and use that pointer to initialize

the resulting com_ptr . Depending on the circumstances, we might steal the reference count

associated with the pointer, or we might just copy it.

If the inbound parameter is an IInspectable (either lvalue or rvalue reference), then we

are in the gotcha case, and we will make an explicit conversion to the default interface before

calling get_self . We can use attach/detach semantics because the temporary default

interface is going out of scope soon, so we can steal its reference.

4/4

Otherwise, the inbound parameter is something other than IInspectable , so we are not in

the gotcha case. For rvalue references, we can use use attach/detach semantics because the

rvalue reference allows us to steal its reference. For lvalue references, we use copy semantics

because the original retains its reference.

¹ It is legal for a projected type to have multiple implementations. This actually happens on

occasion. For example there are different implementations of PointerPoint depending on

which kind of device the point came from. The PointerPoint itself is a smart pointer to an

unknown implementation.

If you aren’t sure whether the implementation is yours, you can create a private marker

interface to identify your own objects.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

