
1/3

August 26, 2020

Why are some system functions exported as stubs
instead as forwarders?

devblogs.microsoft.com/oldnewthing/20200826-00

Raymond Chen

If you do a little digging around inside some Windows system functions, you’ll see that, for

example, the CreateProcessW function looks like this:

kernel32!CreateProcessW:

6b819ef0 mov edi,edi

6b819ef2 push ebp

6b819ef3 mov ebp,esp

6b819ef5 pop ebp

6b819ef6 jmp dword ptr [kernel32!kernelbase_CreateProcessW]

The first four instructions have no net effect, so basically this is just an indirect jump to the

kernelbase!CreateProcessW function. In other words, it’s a stub that forwards to the real

implementation over in kernelbase .

Why is it done this way? Why isn’t the CreateProcessW function just a forwarder to

kernelbase ? That would avoid having to travel through kernel32 just to reach

kernelbase .

Yes, this would normally be a forwarder, but it’s not. For backward compatibility.

Wait, why is there a compatibility constraint that the CreateProcessW function cannot be a

forwarder?

Set the time machine to 2001. The Microsoft Layer for Unicode (MSLU) was just released,

also affectionately known as “Unicows”, after the DLL component of MSLU: unicows.dll .

MSLU was a combination of a static library and a DLL. You wrote a Unicode application and

linked it with the MSLU static library. This library contained its own definitions for a large

number of functions, including CreateProcessW . When your Unicode application called

the alternate version of CreateProcessW , the library checked whether it was running on a

version of Windows that was ANSI-only (the Windows 95 series) or a version that supported

Unicode (the Windows NT series).

https://devblogs.microsoft.com/oldnewthing/20200826-00/?p=104125
https://en.wikipedia.org/wiki/Microsoft_Layer_for_Unicode

2/3

If it was running on an ANSI-only system, then the stub loaded the unicows.dll library

and forwarded the call to a helper function in that library which did the work of thunking the

Unicode parameters to ANSI, and then calling the CreateProcessA function, and then

converting the results back to Unicode, and returning that to the caller. If it was running on a

Unicode system, then it forwarded the call to the operating system’s CreateProcessW

function.

In other words, the static library contained a stub that decided whether to allow the Unicode

call to go straight to the Unicode version of the underlying function, or whether it should

convert the call to ANSI and call the ANSI version of the underlying function.

Okay, great, so where do DLL forwarders come into the story?

After the MSLU static library decides which code path it should use, it goes back and patches

the the caller’s import table to point directly to the destination function. That way, the second

and subsequent calls are direct and don’t go through the evaluation step again. (This is the

same sort of trick that the delay-load stubs use.)

In the case where the MSLU static library decided to pass the function straight to the

Unicode version of the underlying function, it needs to get the address of that Unicode

version of the underlying function. For reasons not entirely clear to me, it doesn’t use the

GetProcAddress function.¹ Instead it has a custom implementation of GetProcAddress

which parses the DLL export table manually to find the function to forward to.

That custom implementation of GetProcAddress doesn’t support forwarders. There’s even

a comment acknowledging as much:

 // This is a forwarder - Ignore for now.

Therefore, any function supported by MSLU may not take the form of a DLL forwarder. It

must be a stub. Just in case somebody runs a program from the early 2000s written with

MSLU.

Bonus chatter: This requirement that the function be a stub and not be a forwarder applies

only to the x86-32 version of Windows, since that’s the only architecture supported by the

Windows 95 series, and therefore the only one supported by MSLU. However, the functions

are stubs on all architectures, presumably for simplicity of implementation.

¹ My suspicion was that it does this to avoid certain reentrancy issues in the loader, but I’m

not sure.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

