
1/2

August 13, 2020

Working around the requirement that Concurrency
Runtime task results must be default-constructible and
copyable

devblogs.microsoft.com/oldnewthing/20200813-00

Raymond Chen

Last time, we shed light on the hidden constraints on the result type in Concurrency Runtime

tasks: The result type must have a public default constructor, and it must be copyable.

But what if your desired result type doesn’t satisfy these requirements?

To work around the need for a public default constructor, you can wrap your result type

inside something that does have a public default constructor, such as std::optional .

Concurrency::task<std::optional<T>>

 t([]() { return T::make(); });

If you produce the result from a lambda, you can just return a T , and a

std::optional<T> will be constructed from it. If you produce the result from a

task_ completion_ event , you’ll have to use a

task_ completion_ event<std::optional< T>> . The result of the task will be an

optional<T> , and you can use the dereference operator * to extract the value. (This

assumes that the task always completes with a value, which I assume it does, because that’s

what it did before you started down this path.)

To work around the need for copyability, you can wrap the result in a

std::shared_ptr<T> . That way, there is still only one T object, and all the continuations

get the shared copy.

And since std::shared_ptr has a public default constructor, if your result type falls into

both categories (lacks a public default constructor, is not copyable), you can wrap it in a

std::shared_ptr<T> and solve both problems.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20200813-00/?p=104080
https://devblogs.microsoft.com/oldnewthing/20200812-00/?p=104075
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

