
1/2

August 4, 2020

How can CharUpper and CharLower guarantee that the
uppercase version of a string is the same length as the
lowercase version?

devblogs.microsoft.com/oldnewthing/20200804-00

Raymond Chen

The CharUpper function takes a buffer of characters and converts them in place to

uppercase. This requires that the uppercase version of any character occupy the same

number of code units as the lowercase counterpart. However, there is nothing in the Unicode

specification that appears to require this. Did Microsoft come to some sort of special under-

the-table deal with the Unicode Consortium to ensure that this property holds for all

characters?

No, there is no such special under-the-table deal, probably because there is also no such

guarantee. And in fact, there are counterexamples if you look closely enough. We noted

earlier that the uppercase version of the ß character for a long time was the two-character

combination SS. (This got even more complicated with the adoption of the capital ẞ in 2017.)

There’s also U+1F80 GREEK SMALL LETTER ALPHA WITH PSILI AND

YPOGEGRAMMENI “ᾀ” whose uppercase version is the two characters U+1F08 GREEK

CAPITAL LETTER ALPHA WITH PSILI and U+0399 GREEK CAPITAL LETTER IOTA “ἈΙ”.

But if you ask CharUpper to convert them, it leaves ß unchanged, and it converts “ᾀ” to

U+1F88 GREEK CAPITAL LETTER ALPHA WITH PSILI AND PROSGEGRAMMENI “ᾈ”.

The CharUpper function tries to convert the string in place, but if the uppercase and

lowercase versions of a character are not the same length, then it panics and does something

strange.

The CharUpper function is a legacy function that remains for compatibility with the

AnsiUpper function in 16-bit Windows, and we saw last time that the AnsiUpper function

was originally hard-coded to code page 1252. Over time, Windows added support for other

code pages, and they happened to have enjoyed the property that the uppercase and

lowercase versions of a string have the same length. (Again, if you ignore the weird ß ↔ SS

thing.)

https://devblogs.microsoft.com/oldnewthing/20200804-00/?p=104040
https://en.wikipedia.org/wiki/Capital_%E1%BA%9E
https://devblogs.microsoft.com/oldnewthing/20200803-00/?p=104038

2/2

Eventually, that rule broke down, but you can’t go back in time and kill CharUpper ‘s

parents before it was born. You just have to accept that there’s this thing called CharUpper

that has some baked-in assumptions that are wrong. If you give it a string that violates those

assumptions, then it does what it can, but the results aren’t the best.

I would consider the CharUpper and CharLower family of functions to be deprecated.

Instead, use the LCMapStringEx function with the LCMAP_UPPERCASE or

LCMAP_LOWERCASE flag, as appropriate.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

