
1/4

August 3, 2020

Peeking inside the implementation of AnsiUpper and
AnsiLower in Windows 1.0

devblogs.microsoft.com/oldnewthing/20200803-00

Raymond Chen

Windows 1.0 had functions called AnsiUpper  and AnsiLower . You passed these functions

a pointer to a string, and it converted the string in place to uppercase or lowercase,

respectively. If the segment portion of the pointer is zero, then the offset is treated as a

character code, and it returned the uppercase version of that character code in the low byte of

the return value.

The single-character version could anachronistically be wrapped like this:¹

inline char AnsiUpperChar(char c) 
{ 
return reinterpret_cast<char>( 
   AnsiUpper(reinterpret_cast<LPSTR>( 
     static_cast<unsigned char>(c)))); 
} 

This is an anachronism because in 1983, there was no reinterpret_cast , no

static_cast , no inline functions, and no C++.

It was more likely to be a macro.

#define AnsiUpperChar(c) ((char)AnsiUpper((LPSTR)(unsigned char)(c))) 

The implementations of these functions is entirely in assembly language.

https://devblogs.microsoft.com/oldnewthing/20200803-00/?p=104038


2/4

; Entry: pointer on stack 
; Exit:  If single character, AL = converted character 
;        If string, DX:AX = original pointer 

AnsiUpper proc far 
       mov bx, sp          ; custom stack frame 
       push di             ; save registers 
       push si 
       les di, ss:[bx+4]   ; es:di -> string 
       mov cx, es          ; cx:ax -> string 
       mov ax, di 
       call UpperChar      ; uppercase the character in AL 
       jcxz aup90          ; Exit if CX = 0 
       call UpperString    ; uppercase the string in ES:DI 
       mov dx, es          ; return the original pointer 
       mov ax, ss:[bx+4] 
aup90:  pop si 
       pop di 
       ret 4 
AnsiUpper endp 

; Entry: AL = character 
; Exit:  AL = uppercase version of character 
; Modifies: No other registers 

UpperChar proc near 
       cmp al, 0x61        ; Q: Less than 'a'? 
       jb uch90            ; Y: Nothing to do 
       cmp al, 0x7a        ; Q: Less than 'z'? 
       jbe uch80           ; Y: Convert to uppercase 
       cmp al, 0xe0        ; Q: Less than 'à'? 
       jb uch90            ; Y: Nothing to do 
       cmp al, 0xfe        ; Q: More than 'þ'? 
       ja uch90            ; Y: Nothing to do 
uch80:  sub al, 0x20        ; Convert lowercase to uppercase 
uch90:  ret 
UpperChar endp 

; Entry: ES:DI -> string to convert to uppercase 
; Exit: String has been converted to uppercase in place 
; Modifies: SI, DI, AL 

UpperString proc near 
       cld                 ; Ensure we walk forward 
       mov si, di          ; ES:SI and ES:DI both -> string 
ust10:  lodsb es:[si]       ; Load character and advance SI 
       call UpperChar      ; Convert to uppercase 
       stosb               ; Save result and advance DI 
       or al, al           ; Q: End of string? 
       jnz ust10           ; N: Keep converting 
       ret 
UpperString endp 



3/4

The AnsiLower  function is entirely analogous, so I won’t bother writing it out.

The AnsiUpper  function doesn’t use the usual BP  stack frame. To save code space, it uses

BX  as the stack frame pointer. That way, it doesn’t need to do all the usual frame setup and

teardown stuff. This code does not call out to other code segments, so we won’t trigger any

segment-not-present thunks that would require stack patching, so the lack of a proper BP

frame is not going to cause a problem.

The structure of the AnsiUpper  function is rather odd. It first assumes that you’re calling it

with a single character and converts the offset from lowercase to uppercase. Only after the

conversion does it check whether you actually called it that way. If so, then it jumps to the

exit with the converted character. Otherwise, it throws away all the work it did and starts

over by converting the pointed-to string.

Why does it structure the code this way? Because it saves an instruction. Instead of

   if condition goto branch2 
   do_branch1 
   goto end 
branch2: 
   do_branch2 
end: 

you speculatively front-load one of the branches and discard it if it turns out to be the wrong

branch.

   do_branch2 
   if condition goto end 
   do_branch1 
end: 

This removes the goto end  from the instruction stream, saving two bytes.

Of course, this trick requires that do_branch2  has no side effects, or at least that the side

effects can be rolled back if the speculation turns out to have been unwarranted.

The UpperChar  function has a custom register-based calling convention. This is common in

hand-written assembly language, allowing you to tailor the calling convention to the usage

pattern.

You may have noticed that the UpperChar  function doesn’t consult any code page tables to

figure out which characters are uppercase and which are lowercase. It just hard-codes the

special knowledge of code page 1252, which was the ANSI code page that Windows 1.0 used.

In the layout of code page 1252, the letters are in two blocks: One from A to Z, and another

from À to Þ. Furthermore, the uppercase and lowercase versions are exactly 32 slots apart, so

adding 32 gets you from uppercase to lowercase, and subtracting 32 gets you from lowercase

https://devblogs.microsoft.com/oldnewthing/20120622-00/?p=7303
https://devblogs.microsoft.com/oldnewthing/20110316-00/?p=11203
https://en.wikipedia.org/wiki/Windows-1252#Character_set


4/4

to uppercase.

Okay, back to AnsiUpper . If it turns out that we have a string, then the work is done by the

UpperString  function. This function takes advantage of the special LODSB  and STOSB

instructions to load a single byte from the string and to write a single byte to the string. These

are single-byte instructions that replace two larger instructions (load a byte and increment

the index register), so they are handy when trying to squeeze every code byte out of your

program.

You may have spotted some quirks in this conversion code.

The CharUpper  function treats U+00D7 × as the uppercase version of U+00F7 ÷. If you ask

for the lowercase version of the multiplication symbol, you get the division symbol, and

conversely when converting from lowercase to uppercase.

Another quirk is that the code doesn’t try to capitalize ß to SS. It just leaves it as ß. There is

no uppercase ẞ in code page 1252.

Believe it or not, there was a point to this exercise beyond just digging up ancient code

designed under very different constraints and marveling how it worked. We’ll put this

function into context next time.

¹ You might be tempted to use this:

inline char AnsiUpperChar(char c) 
{ 
return reinterpret_cast<char>( 
   AnsiUpper(reinterpret_cast<LPSTR>(c))); 
} 

but that doesn’t work because char  is probably a signed type, so the char  will be sign-

extended, which means that a character in the 0x80  to 0xFF  range will produce a pointer

of the form 0xFFFF:0xFFxx . Since this does not have zero in the high word, it will be

treated as a pointer and corrupt random memory.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

