
1/2

July 30, 2020

What’s the deal with OLDNAMES.LIB?
devblogs.microsoft.com/oldnewthing/20200730-00

Raymond Chen

Set the time machine to 1988. The C language has not yet been standardized. Everybody had

their own libraries for doing stuff, and some of them even pretended to be compatible with

each other. The Microsoft C compiler, for example, came with a bunch of functions like

unlink and stat to provide sort-of compatibility with Unix-sort-of source code.

And then the C standard was ratified in 1989. Now things got interesting, because those

functions were not part of the C standard. Standard-conforming C programs were welcome to

define functions with those names, and the rules say that this is perfectly legal and are not

references to the identically-named Unix-like functions.

Now, there was a lot of code written for the Microsoft C toolchain that used these sort-of-

Unix-ish functions, and renaming those functions would cause those programs to break.

So should we rename the Unix-ish functions in the Microsoft C library, in order to conform to

the C standard? Or should we leave the functions in the Microsoft C library under their pre-

standard names, to keep existing code working?

Let’s do both!

The Microsoft C library renamed these Unix-ish function to have a leading underscore. So

unlink became _unlink , and so on. A program that didn’t use the Unix-ish library

functions could define its own function called unlink , and everything would work just fine.

But if the program actually wanted to use the unlink function from the Unix-ish library,

this magic library OLDNAMES.LIB would step in.

The OLDNAMES.LIB library doesn’t contain any code of its own. Rather, it contains name

redirections that say, “Hey, I have a symbol called unlink , in case you were looking for it.

Wait, you want to know what this symbol represents? Um, it represents a symbol named

_unlink . Good luck with that.”

If the linker cannot find a symbol named unlink , it turns to OLDNAMES.LIB as a library of

last resort, and that library resolves the symbol unlink , but replaces it with an unresolved

symbol named _unlink . The linker then goes through the symbol resolution process again,

https://devblogs.microsoft.com/oldnewthing/20200730-00/?p=104021
https://dilbert.com/strip/1996-01-27

2/2

and this time it finds _unlink in the regular C library.

The net result is that your attempt to call the function unlink got redirected to the function

_unlink , but only if you didn’t already have a function named unlink .

You can suppress the OLDNAMES.LIB library in various ways, most notably by passing the

/NODEFAULTLIB flag, which can be abbreviated to the somewhat enigmatic /NOD .

Raymond Chen

Follow

https://docs.microsoft.com/cpp/c-runtime-library/backward-compatibility?view=vs-2019
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

