
1/3

July 28, 2020

A look back at memory models in 16-bit MS-DOS
devblogs.microsoft.com/oldnewthing/20200728-00

Raymond Chen

In MS-DOS and 16-bit Windows programming, you had to deal with memory models. This

terms does not refer to processor architecture memory models (how processors interact with

memory) but rather how a program internally organizes itself. The operating system itself

doesn’t know anything about application memory models; it’s just a convenient way of

talking about how a program deals with different types of code and data.

The terms for the memory models came from the C compiler, since this informed the

compiler what type of code to generate. The four basic models fit into a nice table:

Data pointer size

Near Far

Code pointer size

Near Small Compact

Far Medium Large

The 8086 used segmented memory, which means that a pointer consists of two parts: A

segment and an offset. A far pointer consists of both the segment and the offset. A near

pointer consists of only the offset, with the segment implied.

Once you had more than 64KB of code or more than 64KB of data, you had to switch to far

code pointers or far data pointers (respectively) in order to refer to everything you needed.

Most of my programs were Compact, meaning that there wasn’t a lot of code, but there was a

lot of data. That’s because the programs I wrote tended to do a lot of data processing.

The Medium model was useful for programs that had a lot of code but not a lot of data. User

interface code often fell into this category, because you had to write a lot of code to manage a

dialog box, but the result of all that work was just a text string (from an edit box) and some

flags (from some check boxes). Many computer games also fell into this category, because

you had a lot of game logic, but not a lot of game state.

https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012

2/3

MS-DOS had an additional memory model known as Tiny, in which the code and data were

all combined into a single 64KB segment. This was the memory model required by programs

that ended with the .COM extension, and it existed for backward compatibility with CP/M.

CP/M ran on the 8080 processor which supported a maximum of 64KB of memory.

Far pointers could access any memory in the 1MB address space of the 8086, but each object

was still limited to 64KB because pointer arithmetic was performed only on the offset portion

of the pointer. Huge pointers could refer to memory blocks larger than 64KB by adjusting the

segment whenever the offset overflowed.¹ Pointer arithmetic with huge pointers was

computationally expensive, so you didn’t use them much.²

You weren’t limited to the above memory models. You could make up your own, known as

mixed model programming. For example, you could say that most of your program is Small

memory model, but there’s one place where you need to access memory outside the default

data segment, so you declared an explicit far pointer for that purpose. Similarly, you could

define an explicitly far function to move it out of the default code segment.

The memory model specified the default behavior, so if you called, say, memcpy , you got a

version whose pointer size matched your memory model. If you had a Small or Medium

model program and wanted to copy memory that was outside your default data segment, you

could call the _fmemcpy function, which was the same as memcpy except that it took far

pointers. (If you used the Compact or Large memory model, then memcpy and _fmemcpy

were identical.)

One of my former colleagues is back in school and was talking with his (younger) advisor.

Somehow, the topic turned to the 8086 processor. My colleague and his friend explained

segmented addressing, near and far pointers, how pointer equality and comparison

behaved,³ the mysterious A20 gate, and how the real mode boot sector worked. “The look of

horror on his face at how segment registers used to work was priceless.”

I quickly corrected my colleague. “‘Used to work’? They still work that way!”

Bonus chatter: You can see the remnants of 16-bit memory models in the macros NEAR

and FAR defined by windows.h . They don’t mean anything any more, but they remain for

source code backward compatibility.

¹ In MS-DOS, huge pointers operated by putting the upper 16 bits of the 20-bit address in the

segment and putting the remaining 4 bits in the offset. The offset of a huge pointer in MS-

DOS was always less than 16.

² In 16-bit Windows, there was a system function called hmemcpy , which copied memory

blocks that could be larger than 64KB. And now you know what the h prefix stood for.

https://devblogs.microsoft.com/oldnewthing/20171113-00/?p=97386
https://devblogs.microsoft.com/oldnewthing/20120206-00/?p=8373
https://devblogs.microsoft.com/oldnewthing/20120913-00/?p=6613

3/3

³ Segmented memory is a great source of counterexamples. For example, in a segmented

memory model, you could have a pointer p to a buffer of size N, and another pointer q could

satisfy the inequalities

p <= q && q <= p + N

despite not pointing into the buffer.

This is one of the reasons why the C and C++ programming languages do not specify the

result of comparisons between pointers that do not point to elements of the same array.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

