
1/2

July 27, 2020

How do I set multiple items to a Windows Runtime vector
in a single call?

devblogs.microsoft.com/oldnewthing/20200727-00

Raymond Chen

Suppose you want to set multiple items to a Windows Runtime IVector<T> . This is

common in the cases where the system provides a vector that you are expected to fill with

stuff. For example:

// C#

var picker = new FileOpenPicker();

picker.FileTypeFilter.Add(".bmp");

picker.FileTypeFilter.Add(".gif");

picker.FileTypeFilter.Add(".jpg");

picker.FileTypeFilter.Add(".png");

Surely there is an easier way to do this than calling Add multiple times, right?

Yes, there is an easier way, but the easier way depends on what language you are using. Each

language expresses the Windows Runtime IVector<T> in its own language-specific way.

C# projects the IVector<T> as an System.Collections.Generic.IList<T> . You can

use object and collection initializer syntax to fill the collection as part of the object

initialization.

// C#

var picker = new FileOpenPicker()

 {

 FileTypeFilter = { ".bmp", ".gif", ".jpg", ".png" }

 };

Note, however, that this syntax works only in an object initializer.

// doesn't work

picker.FileTypeFilter = { ".bmp", ".gif", ".jpg", ".png" };

You might be tempted to use List<T>.AddRange() , but that doesn’t work either because

what you have is an IList<T> , not a List<T> . Many people have solved this problem by

using an extension method.

https://devblogs.microsoft.com/oldnewthing/20200727-00/?p=104008
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://stackoverflow.com/questions/1474863/addrange-to-a-collection

2/2

C++/WinRT exposes the IVector<T> very close to how it is defined in the ABI. In

particular, there is a ReplaceAll method.

// C++/WinRT

auto picker = FileOpenPicker();

picker.FileTypeFilter().

 ReplaceAll({ L".bmp", L".gif", L".jpg", L".png" });

C++/CX is a bit more annoying because you have to pass a Platform:: Array^ to the

ReplaceAll method, and those Array^ types are frustrating to manufacture.

// C++/CX

auto picker = ref new FileOpenPicker();

String^ extensions[]{ L".bmp", L".gif", L".jpg", L".png" };

picker->FileTypeFilter->ReplaceAll(

 ArrayReference<String^>(extensions, _ARRAYSIZE(extensions)));

Sadly, there are no deduction guides for ArrayReference so you end up having to repeat

String^ .

JavaScript projects IVector<T> as a native JavaScript Array , and those objects have

quite a rich panoply of available methods. One that is useful for us today is splice .

// JavaScript

var picker = new Windows.Storage.Pickers.FileOpenPicker();

picker.fileTypeFilter.splice(0, 0, ".bmp", ".gif", ".jpg", ".png");

The JavaScript projection is kind enough to project the original replaceAll method as

well, which leads us to this somewhat simpler version:

// JavaScript

var picker = new Windows.Storage.Pickers.FileOpenPicker();

picker.fileTypeFilter.replaceAll([".bmp", ".gif", ".jpg", ".png"]);

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

