
1/3

July 23, 2020

How to get your C++/WinRT asynchronous operations to
respond more quickly to cancellation, part 2

devblogs.microsoft.com/oldnewthing/20200723-00

Raymond Chen

We saw last time that you can hasten the cancellation of your C++/WinRT coroutine by

polling for cancellation. But that works only if it’s the top-level coroutine that needs to

respond to the cancellation. But often, your coroutine calls out to other coroutines, and if one

of those other coroutines takes a long time, your main coroutine won’t get a chance to

respond to the cancellation until it regains control.

Can we get the main coroutine to respond more quickly to cancellation?

Sure.

You can pass a custom delegate to the the C++/WinRT cancellation token’s callback

method to be notified immediately when the coroutine is cancelled.

IAsyncAction ProcessAllWidgetsAsync()

{

 auto cancellation = co_await get_cancellation_token();

 cancellation.callback([] { /* zomg! cancelled! */ });

 auto widgets = co_await GetAllWidgetsAsync();

 for (auto&& widget : widgets) {

 if (cancellation()) co_return;

 ProcessWidget(widget);

 }

 co_await ReportStatusAsync(WidgetsProcessed);

}

When the coroutine is cancelled, the cancellation callback is called immediately. This is your

chance to hasten the death of your coroutine. For example, we could do so by cancelling the

GetAllWidgetsAsync call.

https://devblogs.microsoft.com/oldnewthing/20200723-00/?p=104000
https://devblogs.microsoft.com/oldnewthing/20200722-00/?p=103997

2/3

IAsyncAction ProcessAllWidgetsAsync()

{

 auto cancellation = co_await get_cancellation_token();

 auto operation = GetAllWidgetsAsync();

 cancellation.callback([operation] { operation.Cancel(); });

 auto widgets = co_await operation;

 for (auto&& widget : widgets) {

 if (cancellation()) co_return;

 ProcessWidget(widget);

 }

 co_await ReportStatusAsync(WidgetsProcessed);

}

If the ProcessAllWidgetsAsync is cancelled, we propagate that cancellation to the Get‐

AllWidgetsAsync operation, in the hopes that it will abandon its attempt to get all the

widgets and give control back to ProcessAllWidgetsAsync . The co_await will fail with

hresult_canceled , which will then propagate out of the coroutine, causing the entire

coroutine to become cancelled.

This is a common enough pattern that you could write a wrapper for it:

template<typename Async, typename Token>

std::decay_t<Async> MakeCancellable(Async&& async, Token&& token)

{

 token.callback([async] { async.Cancel(); });

 return std::forward<Async>(async);

}

Now we just wrap our asynchronous operations inside a MakeCancellable :

IAsyncAction ProcessAllWidgetsAsync()

{

 auto cancellation = co_await get_cancellation_token();

 auto widgets = co_await MakeCancellable(GetAllWidgetsAsync(), cancellation);

 for (auto&& widget : widgets) {

 if (cancellation()) co_return;

 ProcessWidget(widget);

 }

 co_await MakeCancellable(ReportStatusAsync(WidgetsProcessed), cancellation);

}

Exercise: What happens if the ProcessAllWidgetsAsync is cancelled after GetAll‐

Widgets has completed?

Don’t give up yet: There’s part 3.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20200923-00/?p=104261
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

