
1/3

July 22, 2020

How to get your C++/WinRT asynchronous operations to
respond more quickly to cancellation, part 1

devblogs.microsoft.com/oldnewthing/20200722-00

Raymond Chen

C++/WinRT provides an implementation for Windows Runtime asynchronous actions and

operations, and they even support cancellation, even if your code doesn’t realize it.

Whenever¹ your coroutine performs a co_await , the C++/WinRT library checks whether

the coroutine has already been cancelled.² If so, then it abandons the coroutine and goes to

the Canceled state.

IAsyncAction ProcessAllWidgetsAsync()
{
 auto widgets = co_await GetAllWidgetsAsync();
 for (auto&& widget : widgets) {
 ProcessWidget(widget);
 }
 co_await ReportStatusAsync(WidgetsProcessed);
}

This function gathers all the widgets and then processes them one by one. But say there are

thousands of widgets, and you try to Cancel the operation:

IAsyncAction DoOperationAsync()
{
 // Remember the operation so we can cancel it.
 operation = ProcessAllWidgetsAsync();

 co_await operation;
}

void CancelOperation()
{
 operation.Cancel();
}

When the Cancel is called, the C++/WinRT library remembers that the coroutine has been

cancelled and looks for a chance to stop the coroutine. But right now, the coroutine is busy

running the loop inside Process All Widgets , and the C++/WinRT library doesn’t get

https://devblogs.microsoft.com/oldnewthing/20200722-00/?p=103997

2/3

control until the co_await when it comes time to report the status. Once that happens, the

coroutine stops executing and reports its cancellation.³

That could be hours from now.

You can hasten the cancellation process in your coroutine by polling for cancellation.

IAsyncAction ProcessAllWidgetsAsync()
{
 auto cancellation = co_await get_cancellation_token();

 auto widgets = co_await GetAllWidgetsAsync();
 for (auto&& widget : widgets) {
 if (cancellation()) co_return;
 ProcessWidget(widget);
 }
 co_await ReportStatusAsync(WidgetsProcessed);
}

The co_await get_cancellation_token() produces a cancellation token for the

current coroutine.⁴

Before processing each widget, we check if we have been cancelled. If so, then we just give up

immediately. The co_return is another point where the C++/WinRT library regains

control, and that also processes the pending cancellation.

But wait, what if the caller tries to cancel the operation while the Get All Widgets Async is

in progress? Control is now inside that other asynchronous operation, and it could take a

very long time to get all of the widgets. Next time, we’ll look at how to propagate the

cancellation into dependent coroutines.

¹ There are a few exceptions to this rule, but it’s true enough.

² I spell cancelled with two L’s.

³ This highlights the importance of using RAII types for all of your cleanup. If the coroutine

stops executing due to cancellation, then its automatic objects are destructed according to the

usual rules of C++, and that’s where your abnormal cleanup happens. We’ll talk more about

this soon.

⁴ The co_await get_cancellation_token() is one of the exceptions to the rule that

co_await always checks for cancellation. In this case, co_await get_cancellation_

token() doesn’t actually “await” anything. Rather, it’s a backdoor into the C++/WinRT

library. We’ll learn more about how these backdoors work when we look at how to implement

your own coroutines in C++20, at some unspecified point in the future.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

