
1/3

July 14, 2020

Deconstructing function pointers in a C++ template, the
noexcept complication

devblogs.microsoft.com/oldnewthing/20200714-00

Raymond Chen

Last time, we put together a little traits class to decompose a function pointer into its

components. But one thing missing from our class is the noexcept qualifier.

For the remainder of the discussion, I’ve removed the First Arg and Last Arg type

aliases, since I came to the conclusion that they aren’t really needed. What’s left is this:

template<typename R, typename... Args>
struct FunctionTraitsBase
{
 using RetType = R;
 using ArgTypes = std::tuple<Args...>;
 static constexpr std::size_t ArgCount = sizeof...(Args);
 template<std::size_t N>
 using NthArg = std::tuple_element_t<N, ArgTypes>;
};

template<typename F> struct FunctionTraits;

template<typename R, typename... Args>
struct FunctionTraits<R(*)(Args...)>
 : FunctionTraitsBase<R, Args...>
{
 using Pointer = R(*)(Args...);
};

But it falls apart when we give it a noexcept function pointer. (Note that noexcept did

not become part of the function pointer type until C++17.)

void f()
{
 using T = int(*)() noexcept;
 using R = FunctionTraits<T>::RetType; // error
}

There is no match for T because none of our specializations support noexcept function

pointers.

https://devblogs.microsoft.com/oldnewthing/20200714-00/?p=103981
https://devblogs.microsoft.com/oldnewthing/20200713-00/?p=103978

2/3

So let’s add noexcept to our signatures. Let’s try this version, which takes advantage of the

fact that noexcept takes a Boolean parameter that says whether the noexcept applies.

Saying noexcept with no parameters is shorthand for noexcept(true) , and omitting

noexcept is the same as noexcept(false) .

template<typename R, typename... Args, bool Nonthrowing>
struct FunctionTraits<R(*)(Args...) noexcept(Nonthrowing)>
 : FunctionTraitsBase<R, Args...>
{
 using Pointer = R(*)(Args...) noexcept(Nonthrowing);
 static constexpr bool IsNoexcept = Nonthrowing;
};

The Microsoft compiler doesn’t like it:

// MSVC
error C2057: expecting constant expression
 struct FunctionTraits<R(*)(Args...) noexcept(Nonthrowing)>
 ^^^^^^^^^^^
error C27027: 'Nonthrowing': template parameter not used or deducible

icc also doesn’t like it, but for a different reason: It’s perfectly happy to match the partial

specialization to a non- noexcept function, but thinks it doesn’t apply to a noexcept

function.

 // icc is okay with this
 using Test1 = FunctionTraits<int(*)(float) noexcept>;

 // but not this. "error: incomplete type is not allowed"
 using Test2 = FunctionTraits<int(*)(float) noexcept>;

On the other hand, gcc and clang are okay with it and deduce Nonthrowing appropriately.

I’m not sure who is right. (I didn’t check icc.)

Well that’s a bummer. The parameter to noexcept is not deducible by the Microsoft

compiler. We’ll just have to add a separate specialization.

3/3

template<typename R, typename... Args>
struct FunctionTraits<R(*)(Args...)>
 : FunctionTraitsBase<R, Args...>
{
 using Pointer = R(*)(Args...);
 constexpr static bool IsNoexcept = false;
};

template<typename R, typename... Args>
struct FunctionTraits<R(*)(Args...) noexcept>
 : FunctionTraitsBase<R, Args...>
{
 using Pointer = R(*)(Args...);
 constexpr static bool IsNoexcept = true;
};

Okay, so that takes care of the noexcept wrinkle. We’ll look at another attribute next time.

Update: Paragraph [temp.deduct.type]/8 of the C++ specification lists the deducible

contexts, and the noexcept specifier is not on the list. Therefore, MSVC is correct to reject

it, and gcc and clang’s behavior are nonstandard extensions. This was tracked as Core

Working Group issue number CWG2355, with a vote to revise the standard passing in

January 2022 and accepted on May 21, 2022. MSVC implemented the language change in

February 2020.

Raymond Chen

Follow

https://cplusplus.github.io/CWG/issues/2355.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1018r9.html#CWG2355
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

