
1/3

June 24, 2020

Mundane std::tuple tricks: Selecting via an index
sequence, part 2

devblogs.microsoft.com/oldnewthing/20200624-00

Raymond Chen

Last time, we developed the select_ tuple function which takes a tuple and an index

sequence and produces a new tuple that selects the elements based on the index sequence.

Here’s what we had:

// Don't use this; see discussion.
template<typename Tuple, std::size_t... Ints>
auto select_tuple(Tuple&& tuple, std::index_sequence<Ints...>)
{
return std::make_tuple(
 std::get<Ints>(std::forward<Tuple>(tuple))...);
}

The idea is that you can do something like

std::tuple<int, char, float> t{ 1, 'x', 2.0 };
auto t2 = select_tuple(t, std::index_sequence<0, 2>{});

and the result is that t2 is a std::tuple<int, float>{ 1, 2.0 } .

But there’s a problem with this function.

Here’s a riddle: When does std::make_tuple<T>() return something that isn’t a

std::tuple<T> ?

std::make_tuple<T> Produces std::tuple<T>

int int

const int

int&

int&&

std::reference_wrapper< int > int&

https://devblogs.microsoft.com/oldnewthing/20200624-00/?p=103902
https://devblogs.microsoft.com/oldnewthing/20200623-00/?p=103883

2/3

std::reference_wrapper<const int >

std::reference_wrapper< int& >

std::reference_wrapper< int&&>

Answer: When T is subject to decay or decays to a reference_ wrapper .

Decay is a term in the C++ standard that refers to the changes of type that typically occur

when something is passed by value to a function:

References decay to the underlying type.

cv-qualifiers (const and volatile) are removed.

Arrays decay to pointers.

Function decay to function pointers.

But make_ tuple adds an additional wrinkle: If the decayed type is a

reference_ wrapper , then the result is the underlying reference.

We don’t want any of these transformations to occur. If you select a type from a tuple that is a

reference, then you want the resulting tuple to have the same reference type.

So we can’t use make_ tuple . We’ll specify the desired tuple type explicitly.

template<typename Tuple, std::size_t... Ints>
auto select_tuple(Tuple&& tuple, std::index_sequence<Ints...>)
{
return std::tuple<std::tuple_element_t<Ints, Tuple>...>(
 std::get<Ints>(std::forward<Tuple>(tuple))...);
}

or alternatively

template<typename Tuple, std::size_t... Ints>
std::tuple<std::tuple_element_t<Ints, Tuple>...>
select_tuple(Tuple&& tuple, std::index_sequence<Ints...>)
{
return { std::get<Ints>(std::forward<Tuple>(tuple))... };
}

Okay, now that we have this helper function, we can do a bunch of fancy tuple manipulation.

Which we’ll do next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

