
1/3

June 19, 2020

Understanding warning C4265: class has virtual
functions, but destructor is not virtual, part 2

devblogs.microsoft.com/oldnewthing/20200619-00

Raymond Chen

Last time, we learned about what warning C4265 (class has virtual functions, but destructor

is not virtual) is trying to say. The fact that it warns you even in the absence of a suspicious

delete means that you can get quite a lot of false positives.

struct Interface
{
 virtual void f() = 0;
 virtual void Destroy() = 0;
};

struct Implementation : Interface
{
 ~Implementation();
 void f() override;
 void Destroy() override;
};

This triggers the warning because Implementation has a non-virtual destructor and virtual

methods f and Destroy .

What the compiler doesn’t realize is that the Destroy method is how the object is

destructed. And the Destroy method is virtual, so everything is just fine. It doesn’t realize

this even if you make the ~Implementation() destructor protected or private.

This pattern is common when implementing COM interfaces, where Release acts as the

virtual destructor-ish method.

https://devblogs.microsoft.com/oldnewthing/20200619-00/?p=103877
https://devblogs.microsoft.com/oldnewthing/20200618-00/?p=103874

2/3

struct Thing : public IThing
{
 // IUnknown
 HRESULT QueryInterface(REFIID riid, void** ppv) override;

 ULONG AddRef() override { return ++m_refCount; }

 ULONG Release() override
 {
 auto refCount = --m_refCount;
 if (refCount == 0) delete this;
 return refCount;
 }

 // IThing
 HRESULT DoTheThing() override;

private:
 ~Thing();
 std::atomic_ulong m_refCount = 1;
};

This is pretty standard boilerplate for a COM object. The object’s destructor is private

because you are expected to destruct the object by calling Release , rather than calling

delete . But it also generates a spurious warning C4265.

You can make the warning go away by declaring Thing as final .

But there are cases where you have a class that is meant to be a base class, so you don’t want

to mark it as final . If you’re using C++/WinRT, you get to choose whether your

implementation classes are final or not, and maybe you don’t want them to be final, but you

do need them to be COM objects, and when you do, warning C4265 will spuriously appear.

In WRL, an example of a non-final object with virtual methods is the FtmBase . This is a

base class that implements IMarshal by forwarding all methods to the standard COM free-

threade marshaler, thereby making your object free-threaded. (If you don’t know what this

means, don’t worry. It’s not important to the main point of this article, though it’s a good

thing to understand when you’re working with COM.)

The point of the FtmBase is to be a base class for other COM objects. And when you do that,

it is the Release method that triggers the destruction. Since Release is a virtual method,

the FtmBase::Release will go to the most-derived object, and that implementation will

perform the delete on the most-derived object, and everything will be fine.

But the compiler doesn’t know that.

The compiler sees a class like FtmBase that has the potential for being used incorrectly. If

somebody did, say,

https://www.amazon.com/DoTheThing-Because-comfort-zones-boring/dp/0996731121

3/3

class Weird : public FtmBase
{
};

void bad_idea()
{
 FtmBase* p = new Weird; // bad idea
 delete p; // even worse idea
}

they would stumble across the problem that warning C4265 is trying to tell you about.

But nobody should be writing code like that in the first place. WRL objects should be created

with Make , and C++/WinRT objects should be created with make . In both cases, the object

lifetimes are managed by IUnknown , which means that you Release the object when

you’re done. The smart pointer classes in WRL and C++/WinRT take care of this for you

(similarly to std::shared_ptr), so you rarely see an explicit call to Release .

In C++/WinRT, the implementation template classes use CRTP, and the Release methods

cast the this pointer to the most-derived type (the first template type parameter) before

deleting, thereby accomplishing the same result in a different way.

So yes, if you use WRL or C++/WinRT, or more generally COM, you will see false positives of

warning C4265. That may be one reason why warning C4265 is off by default.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

