
1/3

June 17, 2020

Blaming the operating system for allowing people to
create files with unusual characters in their names

devblogs.microsoft.com/oldnewthing/20200617-00

Raymond Chen

A security vulnerability report came in that claimed that Windows had a remote code

execution vulnerability because it allows malicious characters in file names.

Specifically, they noted that if you created a Web server with an image upload page, and if an

uploaded file contained a special character like an ampersand, then you could obtain remote

code execution.

They included a complicated server-side script, but here’s the gist:

void OnFileUploaded(string path)

{

system("dosomething.exe " + path);

}

A user could upload files with odd names like

x & logoff &.jpg

x & certutil -installcert -f badcert.jpg

x & sc stop server &.jpg

The resulting commands passed to the system function are

dosomething.exe x & logoff &.jpg

dosomething.exe x & certutil -installcert -f badcert.jpg

dosomething.exe x & sc stop server &.jpg

The ampersand is a CMD.EXE metacharacter for combining multiple commands into a single

line, so each of the above lines is treated as multiple commands. The first is

dosomething.exe x , which presumably fails because there is no file named x . The

second is something dangerous. And sometimes there’s a third command .jpg which is

probably going to fail with '.jpg' is not recognized as an internal or

external command, operable program or batch file.

https://devblogs.microsoft.com/oldnewthing/20200617-00/?p=103870

2/3

The finders claimed that this proves that ampersands in file names are a remote code

execution vulnerability in Windows.

What we have here is a case of creating an insecure system and then being surprised that the

system is insecure. The OnFileUploaded function passes untrusted data directly to the

system function without any attempt to sanitize it first. This is a classic injection attack

(obXKCD), and it is the responsibility of code that builds commands out of strings to be alert

to issues like this.

You’d be best advised to avoid things that do their own level of nontrivial parsing over the

generated command line. SQL commands and command lines are examples of this. In the

above example, it would be better to run the dosomething.exe program directly and pass

the file name (suitably quoted), to avoid any funny business with CMD.EXE command line

parsing.¹

When we informed the finders that there was no Windows vulnerability here, they insisted

that the issue they found is a critical remote code execution vulnerability, shared a paper they

planned on presenting, and warned that publication could likely result in widespread attacks

within hours of disclosure, resulting in compromised Windows systems around the globe.

I reviewed the paper and verified that it didn’t do anything beyond what they had described

in their original report. We advised them that the vulnerability was in their Web server, not

in Windows, and gave them permission to disclose.

As far as I can tell, they never did publish that paper anywhere.

Bonus chatter: They claimed that the issue could be fixed by simply adding the ampersand

to the list of illegal file name characters. They forgot about the percent sign (for injecting

environment variables), the caret (for escaping), and possibly even the apostrophe. They may

also want to file vulnerabilty reports against unix since it is vulnerable to the exact same

problem: If somebody takes an untrusted file name and injects into into a command passed

to the system function, bad things can happen. It’s even worse on unix, because unix has

almost no forbidden file name characters. Even a newline is a legal filename character! So go

ahead, put a bitcoin miner in your file name, let the server do some real work for you.

¹ If you don’t trust yourself to quote potentially-malicious file names safely (and I don’t

blame you), you could pass the file name some other way entirely, like via stdin or by putting

the dangerous file name in a file, and passing that file as an indirect parameter:

something.exe @indirect .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20100114-00/?p=15273
https://www.explainxkcd.com/wiki/index.php/Little_Bobby_Tables
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

