
1/3

June 15, 2020

Error 0x80131040 “The located assembly’s manifest
definition does not match the assembly reference” when
I use a Windows Runtime class written in C# from my
C++/WinRT project

devblogs.microsoft.com/oldnewthing/20200615-00

Raymond Chen

So you’re writing your C++/WinRT project, and everything is going swimmingly. There’s

some code written in C# that you’d rather not port to C++/WinRT, just use as-is. “No

problem,” you say. “I can just package the C# code as a Windows Runtime class, and then I

can use the inter-language features of the Windows Runtime to allow the C# code to be

consumed by C++/WinRT.”

You add the C# code as a project alongside your C++/WinRT project, you add a reference

from the C++/WinRT project to the C# project, and everything builds: It’s a miracle!

Except that when you actually try to use the C#-written Windows Runtime class, you get

error 0x80131040: The located assembly’s manifest definition does not match the assembly

reference.

What’s going on, and more importantly, how do I fix it?

Here’s what’s going on: Visual Studio checks the Min version of the C# project. This version

controls which version of .NET Core and .NET Native are used. In mixed-language scenarios,

such as we have here with C++/WinRT and C#, Visual Studio defaults to .NET Core 1.1 and

.NET Native 1.4. However, if the minimum version is set to Windows 10 version 1709 (Build

16299) or higher, then Visual Studio copies the .NET Core 2 libraries into the application

output folder and tries to run them against .NET Core 1.1.

That is the version mismatch that’s being reported. The mismatch is not with the version of

your C# component. The mismatch is with the version of .NET Core.

The workaround is to set your C# component’s minimum version to Windows 10 version

1703 (Build 15063) or lower: From your C# project, go to Properties, Library, and under

Targeting, set the Min version to Windows 10 Creators Update (10.0; Build 15063) or lower.

https://devblogs.microsoft.com/oldnewthing/20200615-00/?p=103868


2/3

My colleague Johan Laanstra found another workaround, which has been shared by another

colleague Alexander Sklar:

1. Right click on the VCXProj file → Manage NuGet Packages.
2. Search for Microsoft.Net.Native.Compiler, and install it.
3. Then add the following properties to the VCXProj

<PropertyGroup> 
 <UseDotNetNativeToolchain 
Condition="'$(Configuration)'=='Release'">true</UseDotNetNativeToolchain> 
 <DotNetNativeVersion>2.2.3</DotNetNativeVersion> 
</PropertyGroup> 

And it looks like Carcadio Garcia found a different, lengthier workaround, which I haven’t

tried.

Bonus chatter: Tom McDonald informed me that Carcadio Garcia’s workaround has not

been updated for Visual Studio 16.6, which uses different directories from earlier versions of

Visual Studio. Support for Visual Studio 16.6 can be found in this sample project. He also

shared with me some cute little tables. Here’s one of them:

Microsoft.NETCore.Universal -
Windows Platform

Visual
Studio

Dot Net Native -
Version

Dot Net Native -
Shared Library

6.2.10 (current) 16.6 2.2.8-rel-28605-00 2.2.27912.00

6.2.9 16.5 2.2.7-rel-27913-00 2.2.27912.00

There’s also an issue with where the NuGet packages are kept. They could be kept in the

user’s private NuGet package store or in the Visual Studio global package store. The danger

of using the user’s private NuGet package store is that the user might not have the package.

The danger of using the Visual Studio global package store is that the contents of that store

are not contractual and can change at the next update.

NugetPath Visual Studio Sample project

$(ProgramFiles)\Microsoft SDKs\UWP NuGet Packages ≥ 16.6 Sample

$(USERPROFILE)\.nuget\packages ≤ 16.5 Sample

One trick is to create a blank C# UWP app targeting the matching version of the Microsoft.

NETCore.Universal Windows Platform meta-package and build it. That will restore all of the

packages into the user’s private package store so that other projects can consume them.

Raymond Chen

https://twitter.com/jplaanstra
https://github.com/asklar/WinRTComponent/blob/master/README.md
https://twitter.com/alexsklar
https://a.rcad.io/
https://a.rcad.io/csharp-in-cppwinrt
https://github.com/tommcdon
https://github.com/microsoft/react-native-windows/blob/master/packages/microsoft-reactnative-sampleapps/windows/SampleAppCPP/SampleAppCpp.vcxproj
https://www.nuget.org/packages/Microsoft.NETCore.UniversalWindowsPlatform/
https://github.com/tommcdon/NetNativeSamples/blob/Dev16_6_Validation/CPP-CSharp-V2/CPP-CSharp-V2/CPP-CSharp-V2.vcxproj
https://github.com/tommcdon/NetNativeSamples/blob/master/CPP-CSharp-V2/CPP-CSharp-V2/CPP-CSharp-V2.vcxproj
https://www.nuget.org/packages/Microsoft.NETCore.UniversalWindowsPlatform/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


3/3

Follow

 

 


