
1/2

June 8, 2020

Comparing fibers to threads for the purpose of
expanding a thread’s stack at runtime

devblogs.microsoft.com/oldnewthing/20200608-00

Raymond Chen

For the past week, we’ve been looking at using a fiber to allow execution to continue on a

larger stack. Instead of creating a fiber, we could also have created a thread. What are the

pros and cons?

Fibers are user-mode concepts, so switching fibers will save you the overhead of a kernel

transition. This is probably not a big deal since we are using the fiber to run a function that

consumes a lot of stack, and the running time of that function is probably going to

overwhelm the cost of a kernel transition.

On the other hand, the savings of a fiber are more significant when compared to the cost of a

new thread. (And we have to create a new thread, rather than using a thread from the thread

pool, because we need to control the size of the thread’s stack, which is something you can do

only with threads that you created.)

Creating a new thread involves a lot of kernel-mode machinery, as well as a good amount of

user-mode overhead. In particular, creating a thread requires the loader lock because DLL

thread notifications are serialized by the loader lock. The loader lock can be a high-

contention lock under certain workloads; for example, calling Get Module File Name will

probably require the loader lock to ensure that the module table is stable for the duration of

the lookup. Even if it’s not high-contention, the existence of the lock means that the start of

each of your library calls is effectively serialized.

Using fibers also permits you to operate on objects that have thread affinity, such as UI

objects or apartment-threaded COM objects, because the fiber runs on the same thread. You

also have to worry about how to sleep the original thread while waiting for the worker thread

to finish. UI threads, for example, need to pump messages.

On the other hand, fibers are not as well understood as threads. This means that maintaining

code that users fibers may be a challenge to future developers. And as we noted in the

opening to this series, if you manage the fibers incorrectly, you end up creating a lot of

confusion.

https://devblogs.microsoft.com/oldnewthing/20200608-00/?p=103844
https://devblogs.microsoft.com/oldnewthing/20190214-00/?p=101052

2/2

As a general rule, most code does not expect to be run on a fiber. Therefore, if you’re going to

be running foreign code on your fiber, you need to be careful not to use any fiber special

powers while that code is running. If the foreign code uses callbacks, then your callback

shouldn’t move the fiber to another thread. And it shouldn’t suspend the fiber and then call

back into the library.

Fortunately, if the sole purpose of using a fiber is to expand the stack, you are unlikely to be

tempted to pull any of these fancy fiber tricks. You just want to get a bigger stack.

Those are the pros and cons I could come up with off the top of my head.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

