
1/4

June 2, 2020

Using fibers to expand a thread’s stack at runtime, part 1
devblogs.microsoft.com/oldnewthing/20200602-00

Raymond Chen

Last time, we considered a library that required a lot of stack space, and critiqued one

proposed solution that involved pre-emptively converting every thread to a fiber.

The solution is simply not doing anything at all in the DLL_ PROCESS_ ATTACH

notification. Instead, do the work when the application calls into the library.

For concreteness, let’s say that the library reports errors with HRESULT values.

HRESULT TransformWidget(Widget& widget, Options options)

{

return RunOnFiber([&]() -> HRESULT {

 return TransformWidgetWorker(widget, options);

});

}

The RunOnFiber function’s job is to create a temporary fiber and run the lambda on it. The

lambda’s job is to do whatever it is the library needs to do. In this example, you would fill in

the lambda with whatever you need to do in order to transform the widget. I just used a

placeholder function.

Of course, the interesting part for the purpose of today’s discussion is the RunOnFiber

function.

We start with two custom deleters.

https://devblogs.microsoft.com/oldnewthing/20200602-00/?p=103819
https://devblogs.microsoft.com/oldnewthing/20200601-00/?p=103815

2/4

struct fiber_deleter

{

using pointer = HANDLE;

void operator()(HANDLE h) { DeleteFiber(h); }

};
using unique_fiber =

 std::unique_ptr<HANDLE, fiber_deleter>;

struct thread_as_fiber_deleter

{

using pointer = HANDLE;

void operator()(HANDLE) { ConvertFiberToThread(); }

};
using unique_thread_as_fiber =

 std::unique_ptr<HANDLE, thread_as_fiber_deleter>;

The fiber_ deleter let us create a unique_ fiber RAII type which destroys the fiber.

The thread_ as_ fiber_ deleter lets us create a unique_ thread_ as_ fiber

RAII type which undoes the ConvertThreadToFiber if it succeeded. (As a bonus check, we

could assert that the provided handle is equal to GetCurrentFiber() .)

The idea is to convert the thread to a fiber, do our work, and then convert the fiber back to a

thread before returning to the application. We leave the thread in the same state we found it.

That way, the application never observes a thread that has been converted to a fiber behind

its back.

3/4

template<typename Lambda>

HRESULT RunOnFiber(Lambda&& lambda)

{

 struct State

 {

 Lambda& lambda;

 HANDLE originalFiber;

 HRESULT result = S_OK;

 void FiberProc()

 {

 result = lambda();

 SwitchToFiber(originalFiber);

 }

 } state{ lambda };

 unique_fiber workFiber{ CreateFiberEx(0, EXTRA_STACK_SIZE, 0,

 [](void* parameter)

 {

 reinterpret_cast<State*>(parameter)->FiberProc();

 }, &state) };

 if (!workFiber) return HRESULT_FROM_WIN32(GetLastError());

 unique_thread_as_fiber threadFiber;

 if (!IsThreadAFiber()) {

 threadFiber.reset(ConvertThreadToFiber(nullptr));

 if (!threadFiber) {

 return HRESULT_FROM_WIN32(GetLastError());

 }

 }

 state.originalFiber = GetCurrentFiber();

 SwitchToFiber(workFiber.get());

 return state.result;

}

Okay, let’s walk through this.

We start by capturing all of the information we need to share with the fiber into a State

object. We start by giving the fiber access to the lambda that it needs to run.

Next, we create a fiber to use for our large stack-consuming operation. We assign a specific

stack size for this fiber because the entire reason for the fiber is that we need to be running a

a stack of known minimum size.

The fiber’s procedure extracts the lambda from the state and executes it. It saves the result of

the lambda into the result member, and then switches back to the original fiber.

4/4

What’s the original fiber? We’ll get there.

Next, we convert the thread to a fiber if it isn’t one already. We use a

unique_ thread_ as_ fiber to remember whether this succeeded, so we know whether

to convert the fiber back to a thread before we return.

After we are sure the thread is a fiber (either because it already was a fiber, or because we

converted it to one), we get the fiber and save into the originalFiber so that our worker

fiber can switch back.

And then the fun begins: We switch to our worker fiber. That fiber then runs the lambda, and

then switches back to the original fiber. Switching back to the original fiber returns control

back to the point immediately after the SwitchToFiber call in the RunOnFiber function.

Now that we have run the lambda on the fiber, we can return the result that we captured in

the fiber.

Thanks to RAII, the destructors for the threadFiber and workFiber do the work of

restoring the thread to its original state and destroying our temporary fiber.

That’s the basic idea. Creating a fiber only as needed means that we don’t waste memory by

filling it with fibers that never end up being used, or fibers which are sitting around idle

waiting for something to do. Converting the thread to a fiber only for the lifetime of the

library function, and then converting it back, means that we do not interfere with any other

code that wanted to control the fiber state of the thread.

Now that we have the basic idea, we can start refining and extending it. We’ll take a simple

first step next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

