
1/3

May 22, 2020

On the various ways of constructing a C++/WinRT
com_array

devblogs.microsoft.com/oldnewthing/20200522-00

Raymond Chen

The C++/WinRT com_array<T> represents a C-style conformant array of data where the

underlying buffer is allocated via the COM task allocator. It is typically used to represent a C-

style conformant array which is allocated by one component and freed by another.

You will probably need to make one of these things when you are returning a projected array

to the caller, either as the return value or through an output parameter. Here are your

choices of constructor, with names that I made up.

com_array(); (1)

com_array(uint32_t count); (2)

com_array(uint32_t count, T const& value); (3)

template<typename InIt>

com_array(InIt first, InIt last)

(4)

com_array(std::vector<T> const& value) (5)

template<size_t N>

com_array(std::array<T, N> const& value)

(6)

template<size_t N>

com_array(T const(&value)[N])

(7)

com_array(std::initializer_list<T> value) (8)

com_array(void* ptr, uint32_t count,

 take_ownership_from_abi_t);

(9)

com_array(com_array&& other) (10)

1) Default constructor: Creates an empty buffer.

https://devblogs.microsoft.com/oldnewthing/20200522-00/?p=103780
https://github.com/microsoft/cppwinrt/blob/6f1c52ca12e05d71b0c95e03e5dd4e08dd60b56d/strings/base_array.h#L227

2/3

2) Capacity constructor (default value): Creates a buffer of count elements, all containing

copies of a default-constructed T .

3) Capacity constructor (explicit value): Creates a buffer of count elements, each of which

is a copy of the provided value.

4) Range constructor: Creates a buffer that is a copy of the range [first, last) .

5) Vector constructor: Creates a buffer that is a copy of the contents of the vector.

6) Array constructor: Creates a buffer that is a copy of the contents of the array.

7) C-style array constructor: Creates a buffer that is a copy of the contents of the C-style

array.

8) Initializer-list constructor: Creates a buffer that is a copy of the contents of the initializer

list.

9) ABI constructor: Takes ownership of a buffer of specified length.

10) Move constructor: Moves the resources from another com_array of the same type,

leaving the original empty.

Remarks for capacity constructor with default value (2)

Constructor (2) is almost but not quite the same as creating a buffer of count elements each

of which is a default-constructed T . Consider:

auto players = com_array<MediaPlayer>(50);

The MediaPlayer object’s default constructor creates a reference to a new media player

object, and its copy constructor copies the reference. Therefore, the above line of code creates

an array of 50 references to the same media player object, not an array of 50 different media

player objects.

Bonus weirdness: If you pass a count of zero, the com_array will still default-contruct

a T , even though it doesn’t use it for anything.

Remarks for capacity constructor with explicit value (3)

com_array(2, 42) is interpreted as an attempt to use the range constructor (4), which

fails because 2 and 42 are not iterators. To get this to be interpreted as a capacity

constructor with explicit int32_t value, use an explicitly unsigned integer as the first

parameter: com_array(2u, 42) .

Remarks for range constructor (4)

3/3

Sadly, there is (as of this writing)¹ no deduction guide for the range constructor (4), so you

will have to state the underlying type T explicitly:

auto a = com_array<T>(source.begin(), source.end());

Bonus trick: If you want to move the range rather than copy it, use the

std:: move_ iterator iterator adaptor:

auto a = com_array<T>(std::move_iterator(source.begin()),

 std::move_iterator(source.end()));

Remarks for vector (5), array (6), and C-style array (7) constructors

For constructors (5) through (7), the contents of the container are copied. You can use the

range constructor (4) with the move_ iterator iterator adaptor to move the contents into

the com_ array instead of copying.

Remarks for ABI constructor (9)

The ABI constructor (9) is the lowest-level constructor. Use it when you have a block of

memory already allocated via CoTaskMemAlloc and you want the com_array to assume

responsibility for it. To emphasize the special requirements for this constructor, the final

parameter must be take_ ownership_ from_ abi .

¹ Hint hint. Add a deduction guide and create a PR. While you’re at it, fix the range

constructor so it doesn’t inadvertently trigger for com_array(2, 42) .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

