
1/3

May 1, 2020

Diagnosing a hang: Everybody stuck in WinHttpGet-
ProxyForUrl

devblogs.microsoft.com/oldnewthing/20200501-00

Raymond Chen

A customer reported that their program eventually ground to a halt with over 750 threads

stuck in WinHttpGetProxyForUrl :

ntdll!ZwWaitForSingleObject+0x14

KERNELBASE!WaitForSingleObjectEx+0x8f

winhttp!OutProcGetProxyForUrl+0x160

winhttp!WinHttpGetProxyForUrl+0x349

contoso!submit_web_request+0x232

ntdll!TppWorkpExecuteCallback+0x35e

ntdll!TppWorkerThread+0x474

kernel32!BaseThreadInitThunk+0x14

ntdll!RtlUserThreadStart+0x21

(I’ve simplified the stack trace for expository purposes.)

What’s happening here is that you put some work on the thread pool, and that work called

WinHttpGetProxyForUrl . This function is synchronous, but it makes HTTP network

requests which are asynchronous. To bridge the gap, the WinHttpGetProxyForUrl function

performs a synchronous wait for the asynchronous work to complete.

And my guess is that WinHttpGetProxyForUrl itself uses the thread pool to complete its

asynchronous work.

What’s happening is that the program flooded the thread pool with

submit_ web_ request work items. Those work items called WinHttpGetProxyForUrl ,

which queues its own work item and waits for it to complete. But those work items can’t run

because the thread pool’s threads are all busy handling submit_ web_ request work

items.

Eventually, the thread pool may realize that it’s not making progress and spin up a new

thread to deal with the work that has been piling up. Maybe that thread will finish the work

begun by WinHttpGetProxyForUrl , and that will allow one of the

submit_ web_ request threads to continue. Once that thread is finished with the Win‐

https://devblogs.microsoft.com/oldnewthing/20200501-00/?p=103720

2/3

HttpGetProxyForUrl work item, it will go pull another work item from the queue, and odds

are that it’s going to get another submit_ web_ request work item, so now we’re back

where we started, except with one more stuck thread in the thread pool.

If the submit_ web_ request work items come in faster than WinHttpGetProxyForUrl

can retire its own work items, the thread pool will fill up with threads blocked inside

submit_ web_ request , and eventually the thread pool will reach its thread limit, and

everything stops.

You’re basically starving the thread pool by hijacking it with requests that themselves require

the thread pool. All of the thread pool threads are stuck handling your requests, and none are

left to do the work that your requests generated.

It’s like you have a lot of heavy equipment that you want to move, so you hire every moving

company in the city to move them. Company A shows up, and they say, “Hm, this is too big

for us to move by ourselves. Let me call Company B, maybe they can help us.” Company B

says, “Sorry, I can’t help you now. I just got an order to move a heavy piece of equipment.” By

starving out all of the available moving companies, you manage to prevent any of them from

completing the job.

I suspect that this system is running in a network environment where WPAD is slow, which

makes WinHttpGetProxyForUrl ‘s work item take longer to finish its job, and that makes it

more likely that submit_ web_ request work items will arrive faster than WinHttpGet‐

ProxyForUrl work items can be retired.

Now that we’ve diagnosed the problem, what can we do to fix it?

One idea is to hire just one moving company and let them decide how many more moving

companies they need. Put all your calls to submit_ web_ request on a single thread and

retire them one at a time. This clogs up just one thread, leaving the others available to assist.

On the other hand, this means that the requests cannot be handled in parallel.

A better fix is to change the way you use the thread pool so you don’t keep a thread hostage

for a long time.

I’m not an expert on WinHttp, but other people had some ideas on how to do this.

You can switch to WinHttpGetProxyForUrlEx , which returns immediately and calls you

back when it has an answer. The submit_ web_ request function could call WinHttp‐

GetProxyForUrlEx and return immediately. This releases the thread pool thread to do other

work—possibly even the work that WinHttpGetProxyForUrlEx needs to do in order to

complete. When WinHttpGetProxyForUrlEx finishes its asynchronous work, it calls the

callback, and the callback and do whatever work submit_ web_ request was planning on

doing after getting the proxy information.

http://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol

3/3

Basically, go asynchronous all the way. It’s not an unreasonable approach for this program,

since the submit_ web_ request itself models an asynchronous request: It initiates the

request and will call some caller-provided callback with the response from the servber. Since

it’s already behaving asynchronously, you may as well make it even more asynchronous.

Another suggestion was to skip WinHttpGetProxyForUrl entirely and just pass the WIN‐

HTTP_ ACCESS_ TYPE_ AUTOMATIC_ PROXY flag to WinHttpOpen . This defers the proxy

work to the WinHttpOpen function, and it can do that as part of its other asynchronous

activities. This seems like a good idea because it gets you out of the proxy business entirely,

and you still get the asynchronous behavior. It also gives you the satisfaction of fixing a bug

by deleting code.

The customer confirmed that switching to the WIN‐

HTTP_ ACCESS_ TYPE_ AUTOMATIC_ PROXY flag fixed the problem.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

