
1/2

April 29, 2020

How can I detect that the system is no longer showing a
UAC prompt?

devblogs.microsoft.com/oldnewthing/20200429-00

Raymond Chen

A customer wanted to know how to detect when the system is no longer showing a UAC

prompt.

They explained that their program uses Direct3D9. When the UAC dialog is shown, a desktop

switch occurs, and their application loses the graphics device. The attempt to reacquire the

graphics device fails for as long as the UAC dialog is on screen. They want to know when the

UAC dialog is dismissed so they know when they can attempt to reacquire the graphics

device. Otherwise, they are forced to poll.

Before checking with the product team, the customer liaison suggested that the customer

look for a process called consent.exe and wait for it to exit.

Okay, first of all, that’s a bad idea. The consent.exe program is an implementation detail.

Nothing in the platform requires that the UAC feature be implemented by a program called

consent.exe , nor does anything bind that the disappearance of such a program to the

ability to create a Direct3D9 device.

The customer is too focused on the UAC dialog and missing the big picture. Their application

can lose access to graphics hardware for reasons other than the UAC dialog. The user might

lock the workstation. The user might hit Ctrl + Alt + Del . The screen saver could start.

If you are specifically interested in when the user has switched to your desktop, you can get

the desktop associated with the current thread and see if it is the one that is receiving input.

BOOL IsCurrentThreadOnInputDesktop()

{

 BOOL result;

 HDESK desktop = GetThreadDesktop(GetCurrentThreadId());

 return desktop &&

 GetUserObjectInformation(desktop, UOI_IO, &result,

 sizeof(result), nullptr) &&

 result;

}

https://devblogs.microsoft.com/oldnewthing/20200429-00/?p=103715

2/2

To know when the input desktop has changed, you can register an accessibility event hook

and listen for the EVENT_ SYSTEM_ DESKTOPSWITCH event. When you receive that event,

check again.

But really, you don’t care about whether you’re the input desktop. You want to know whether

you can try to acquire graphics resources.

So do that.

Wait for a WM_ PAINT message and attempt your acquisition then. When your window isn’t

visible, the system stops sending WM_ PAINT messages, so the fact that they have returned

is an indicator that now might be a good time to try to acquire your graphics resources.

This does have a thundering herd problem: When the user switches desktops, all the

programs on the new desktop will try to grab graphics resources all at once. The user may

find themselves with a momentarily unresponsive system as all the programs wake up and

try to do stuff all at the same time. Better would be to wait until the user activates your

application’s window, if possible.

A member of the graphics team suggested that the customer could switch to Direct3D 9Ex,

which has improvements to the way it deals with desktop switching.

Bonus chatter: The UAC dialog can be configured to show on the same desktop, rather

than a custom desktop. But the customer doesn’t care about that case. If we had answered

the customer’s question as original stated, they would have been handling that case

incorrectly.

Raymond Chen

Follow

https://en.wikipedia.org/wiki/Thundering_herd_problem
https://docs.microsoft.com/en-us/windows/win32/direct3darticles/direct3d-9ex-improvements
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

