
1/3

April 24, 2020

How do I use C++/WinRT to implement a classic COM
interface that derives from another classic COM
interface?

devblogs.microsoft.com/oldnewthing/20200424-00

Raymond Chen

The C++/WinRT library can be used to implement both Windows Runtime interfaces as well

as classic COM interfaces. One feature of classic COM that is absent (intentionally) from the

Windows Runtime is interface derivation. If you’re writing a class that needs to implement a

derived COM interface, how do you express it? (The WRL library calls this a “chained

interface”.)

For concreteness, let’s suppose that you are implementing IFileSystemBindData and

IFileSystemBindData2 .

The naïve way is to say that you implement both interfaces:

struct MyFileSystemBindData :

 implements<MyFileSystemBindData,

 IFileSystemBindData,

 IFileSystemBindData2>

{

 // IFileSystemBindData

 HRESULT SetFindData(const WIN32_FIND_DATAW* pfd) override;

 HRESULT GetFindData(WIN32_FIND_DATAW* pfd) override;

 // IFileSystemBindData2

 HRESULT SetFileID(LARGE_INTEGER liFileID) override;

 HRESULT GetFileID(LARGE_INTEGER *pliFileID) override;

 HRESULT SetJunctionCLSID(REFCLSID clsid) override;

 HRESULT GetJunctionCLSID(CLSID *pclsid) override;

};

If you do this, you get ambiguous cast errors because the QueryInterface provided by the

implements template ends up doing something like this:

https://devblogs.microsoft.com/oldnewthing/20200424-00/?p=103702

2/3

if (is_guid_of<IFileSystemBindData>(iid)) {

 result = static_cast<IFileSystemBindData>(this);

} else if (is_guid_of<IFileSystemBindData2>(iid)) {

 result = static_cast<IFileSystemBindData2>(this);

}

The cast to IFileSystemBindData* is ambiguous because the compiler can’t tell whether

you want the IFileSystemBindData that is the immediate base class, or whether you want

the IFileSystemBindData that is the base class of the IFileSystemBindData2 interface.

But you didn’t need to do that anyway. The COM interfaces derive from each other, so you

probably want them to share a vtable. Declaring that you implement both interfaces means

that you get two vtables (one for each interface) rather than a shared vtable.

The way to define your object is to say that you implement only the derived interface:

struct MyFileSystemBindData :

 implements<MyFileSystemBindData,

 IFileSystemBindData2>

{

 ...

};

This gets rid of the ambiguous cast, because there is now only one way to get a

IFileSystemBindData .

However, you also need to get the QueryInterface to respond to

IID_IFileSystemBindData .

To do that, you can overload the winrt::is_guid_of function so that a check for

IFileSystemBindData2 includes a test for IFileSystemBindData .

namespace winrt

{

 template<>

 bool is_guid_of<IFileSystemBindData2>(guid const& id) noexcept

 {

 return is_guid_of<IFileSystemBindData2, IFileSystemBindData>(id);

 }

}

This takes advantage of the variadic template overload of is_guid_of introduced in PR

107.

Raymond Chen

Follow

https://github.com/microsoft/xlang/pull/107
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

