
1/2

April 20, 2020

It rather involved being on the other side of this airtight
hatchway: Planting files onto a custom PATH

devblogs.microsoft.com/oldnewthing/20200420-00

Raymond Chen

For some reason, we get lots of reports about DLL planting that basically boil down to this:

Program X is susceptible to a DLL planting attack because it loads the DLL
TOTALLYSAFE.DLL without a full path. If I put a rogue TOTALLYSAFE.DLL on the system
PATH ahead of its actual location, then the rogue copy is loaded into the service, and I have

gained elevation of privilege.

When we dig into the report, we find that the directory into which TOTALLYSAFE.DLL was

planted is not one of the directories that are on the PATH by default. It’s some custom

directory that was added by a third-party program’s installer. And that third-party program

added a directory that granted write access to non-administrators.

So what we have here is a case of creating an insecure system and then being surprised that

it’s insecure.

Creating this insecure system was done by editing the global PATH , which requires

administrator permission. Therefore, we are already on the other side of the airtight

hatchway. There is no elevation of privilege, because you need to have administrator

privileges to create the insecure system in the first place.

The third-party program decided to install itself into a directory directly off the root of the

C: drive. If you create your own subdirectory as a direct child of the root, the default

security grants Modify access to all authenticated users, and that’s dangerous if you’re going

to add that directory to the PATH .

This is one of the reasons why the long-standing recommendation has been to install

programs into a subdirectory of %ProgramFiles% . The security for %ProgramFiles% is set

so that only administrators have write access, which means that if you install into a

subdirectory of %ProgramFiles% , you will get a directory that by default grants write access

only to administrators. You can then safely add that directory to the PATH .

https://devblogs.microsoft.com/oldnewthing/20200420-00/?p=103685
https://devblogs.microsoft.com/oldnewthing/20100114-00/?p=15273

2/2

In many of the cases I’ve seen, the rogue unsafe directory on the PATH belongs to a variety

of popular developer tools. My guess is that the finders install these programs by habit into

all of their systems, and when they find an issue, it never occurs to them that it was their

insecure customizations that was the source of the vulnerability.

Bonus chatter: In one of the cases, the developer tool indeed protects its directories by

limiting write access only to administrators. That didn’t stop the finder from “planting” a

DLL in that protected directory and then “discovering” a vulnerability. So not only did they

require elevation to install the developer tool, they also required elevation in order to “plant”

the DLL into the protected directory. I guess that puts them on the other side of two airtight

hatchways.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

