
1/2

April 16, 2020

Why can’t you return an IAsyncAction from a coroutine
that also does a co_await?

devblogs.microsoft.com/oldnewthing/20200416-00

Raymond Chen

Suppose you’re writing a coroutine, and the last thing you do is call another coroutine which

has exactly the same signature as your function. You might hope to be able to pull off some

sort of tail call elimination.

IAsyncAction DoSomethingAsync(int value);


IAsyncAction MySomethingAsync(int value)

{

 auto adjusted_value = adjust_value(value);

 return DoSomethingAsync(adjusted_value);

}


If there are no co_await  or co_return  statements in your function, then it is not

compiled as a coroutine, and you can just propagate the IAsyncAction  as your own return

value.

But if you use co_await  or co_return , then your function becomes a coroutine, and

propagation doesn’t work:

IAsyncAction MySomethingAsync(int value)

{

 auto adjusted_value = co_await AdjustValueAsync(value);

 return DoSomethingAsync(adjusted_value); // doesn't compile

}


Instead, you have to co_await  the final coroutine.

IAsyncAction DoSomethingTwiceAsync(value)

{

 auto adjusted_value = co_await AdjustValueAsync(value);

 co_await DoSomethingAsync(adjusted_value);

}


Why can’t you just propagate the final coroutine as the return value of your own coroutine?

https://devblogs.microsoft.com/oldnewthing/20200416-00/?p=103677


2/2

You can look at it in terms of the mechanics of co_await : The caller is going to co_await

DoSomethingTwiceAsync() , which means that they are going to obtain an awaiter for

IAsyncAction  and hook up their continuation to it. That awaiter is going to be managing

the IAsyncAction  that DoSomethingTwiceAsync  returns, which is not the same as the

IAsyncAction  that the inner DoSomethingAsync  returns.

Or you can look at it in terms of time travel: The transformation of DoSomethingTwice‐

Async  into a coroutine causes the function to return an IAsyncAction  at the point of the

first suspension, whcih is at the co_await AdjustValueAsync()  call. When the function

performs the co_await , it returns an IAsyncAction  that represents the remainder of the

coroutine. The code that calls DoSomethingAsync  hasn’t run yet, and consequently its

IAsyncAction  does not yet exist. When the coroutine resumes, it eventually gets around to

calling DoSomethingAsync  and obtains an IAsyncAction . But it’s far too late to return

that as the return value of DoSomethingTwiceAsync ; that function returned ages ago. You

can’t go back in time and say, “Oops, sorry, that’s not the IAsyncAction  I wanted to give

you. Use this one instead.”

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

