
1/3

April 15, 2020

When I ask the GetIpAddrTable function to sort the
results, how are they sorted?

devblogs.microsoft.com/oldnewthing/20200415-00

Raymond Chen

A customer had a question about the way the GetIpAddrTable function sorts the results.

The documentation says that if you pass TRUE as the bOrder parameter, then the mapping

table will be sorted upon return.

What exactly is this sorting order?

The customer observed that in practice, they got the IP addresses in this order: Public IP

addresses, then internal addresses, and then local addresses. They were interested in

obtaining the public IP address, so they just asked for the results to be sorted and the

grabbed the first one.

That worked great until one day, they grabbed the first sorted address and got the local

address 127.0.0.1. Did this mean that the system didn’t have any public IP addresses? The

customer is trying to figure out why there was no public address, or at least no public address

that the GetIpAddrTable function could find.

The problem is that their assumption wasn’t supported by the documentation. The

documentation says that the bOrder parameter controls “whether the returned mapping

table should be sorted in ascending order by IPv4 address.”

The sorting is done by IPv4 address, not by scope or availability or subnet or routing or

broadcast. Specifically, the sorting is done in lexicographical order by the IPv4 address in

network byte order.

The following table lists the IPv4 addresses in sorted order (not to scale):

Dotted notation Network byte order dwAddress Notes

0.0.0.0 00 00 00 00 0x00000000 Local

0.0.0.1 00 00 00 01 0x01000000

https://devblogs.microsoft.com/oldnewthing/20200415-00/?p=103673

2/3

⋮ ⋮ ⋮

0.255.255.254 00 FF FF FE 0xFEFFFF00

0.255.255.255 00 FF FF FF 0xFFFFFF00

1.0.0.0 01 00 00 00 0x00000001 Public

1.0.0.1 01 00 00 01 0x01000001

⋮ ⋮ ⋮

9.255.255.255 09 FF FF FF 0xFFFFFF09

10.0.0.0 0A 00 00 00 0x0000000A Private

10.0.0.1 0A 00 00 01 0x0100000A

⋮ ⋮ ⋮

10.255.255.255 0A FF FF FF 0xFFFFFF0A

11.0.0.0 0B 00 00 00 0x0000000B Public
 (mostly)

11.0.0.1 0B 00 00 01 0x0100000B

⋮ ⋮ ⋮

126.255.255.255 7E FF FF FF 0xFFFFFF7E

127.0.0.0 7F 00 00 00 0x0000007F Loopback

127.0.0.1 7F 00 00 01 0x0100007F

⋮ ⋮ ⋮

127.255.255.255 7F FF FF FF 0xFFFFFF7F

128.0.0.0 80 00 00 00 0x00000080 Public
 (mostly)

128.0.0.1 80 00 00 01 0x01000080

⋮ ⋮ ⋮

255.255.255.255 FF FF FF FF 0xFFFFFFFF

Note that the areas marked “Public (mostly)” contain islands of private or other special

addresses within them. The purpose of this list was not to break down the entire IPv4

address range. It was to highlight that lexicographical ordering by IPv4 address in network

byte order has no relation to the nature of the address.

3/3

I suspect what happened is that the company’s public IP address assignment moved from an

address less than 127.0.0.0 to one greater than 128.0.0.0 , which means that

127.0.0.1 is now the numerically lowest IP address.

The sorting performed by the GetIpAddrTable is purely numerical by IPv4 address. If you

want to fish out your system’s public IP address, you’ll have to do your own filtering.

Bonus chatter: I listed IPv4 addresses like 0.0.0.1, even though 0.0.0.1 is strictly speaking

not a valid IPv4 address. The IP_MULTICAST_IF socket option uses values of this form to

mean “Not an address, but an interface index.”

Raymond Chen

Follow

https://tools.ietf.org/html/rfc1122#page-29
https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

