
1/2

March 25, 2020

How can I check whether a Windows Runtime object
supports a member before I try to use it?

devblogs.microsoft.com/oldnewthing/20200325-00

Raymond Chen

Last time, we saw that an invalid cast exception can mean that you tried to use a class

member that isn’t supported by the current operating system. What can you do to avoid this

problem?

You might be running into this problem because your program is running on a version of

Windows that you never intended to support. For example, your program is totally

dependent upon some feature added in Windows 10 version 1903, and there’s no point trying

to run it on anything earlier. You can go to your manifest and set the MinVersion in your

TargetDeviceFamily element to the minimum version that supports the thing you need.

Your application will be deployed only to systems that satisfy your manifest’s minimum

requirements.

You can get the minimum version from MSDN under Additional features and

requirements:

Device family Windows 10, version 1803 (introduced v10.0.17134.0)

In this case, the magic number to put in your manifest is 10.0.17134.0. Naturally, if you have

many minimum requirements, then the one you pick for your manifest is the highest.

<TargetDeviceFamily Name="Windows.Universal"

 MinVersion="10.0.17134.0"

 MaxVersionTested="10.0.18362.0" />

Another option is to perform a runtime check before trying to use the possibly-nonexistent

member. The most direct way is to check specifically for the thing:

https://devblogs.microsoft.com/oldnewthing/20200325-00/?p=103588
https://devblogs.microsoft.com/oldnewthing/20200324-00/?p=103586

2/2

// C#

if (ApiInformation.IsMethodPresent("MyNamespace.MyClass", "SomeMember"))

{

 // There is a method called SomeMember

 myObject.SomeMember();

}

If overloads were added at different times, you will need to use the check that takes an arity.

if (ApiInformation.IsMethodPresent("MyNamespace.MyClass", "SomeMember", 1))

{

 // it is okay to call the overload of the SomeMember method with 1 parameter

 myObject.SomeMember(true);

}

You can use C#’s nameof operator and Type.FullName property to avoid hard-coding

strings. In C++/WinRT, you can use winrt::name_of<T>() .

You can also check for the existence of properties, and even narrow your check to read-only

properties or writable properties.

Another option for the runtime check is to check for the presence of the corresponding

contract that introduced support for it. This information is also provided in MSDN under

Additional features and requirements:

API contract Windows.Foundation.UniversalApiContract (introduced v6)

The contract name and version are what you pass to the IsApiContractPresent method.

// C#

if (ApiInformation.IsApiContractPresent(

 "Windows.Foundation.UniversalApiContract", 6))

{

 // it is okay to use things that were introduced in

 // Windows.Foundation.UniversalApiContract version 6.

}

Bonus chatter: What about JavaScript? In JavaScript, an attempt to read a nonexistent

member succeeds but returns undefined . This behavior is consistent with the overall

design of the JavaScript language.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/uwp/api/Windows.Foundation.Metadata.ApiInformation
https://docs.microsoft.com/en-us/uwp/api/Windows.Foundation.Metadata.ApiInformation
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

