
1/2

March 13, 2020

Providing a better error message when someone tries to
use std::vector as a buffer

devblogs.microsoft.com/oldnewthing/20200313-00

Raymond Chen

Last time, we looked at how we could generate a useful error message if somebody tried to

pass std::vector<bool> to our buffer_ view class. The std::vector<bool> is

unlike all the other std::vector<T> types because it does not require its storage to be in

the form of a traditional C array, which means that it is not possible to obtain direct access to

the underlying storage.

Last time, we struggled with this buffer type:

struct buffer_view
{
 template<typename C>
 buffer_view(std::vector<C> const& v) :
 data(v.data()), size(v.size() * sizeof(C)) { }

 // Imagine other constructors for std::array, etc.

 void const* data;
 std::size_t size;
};

If somebody tries to create a buffer_ view from a std::vector<bool> , they get an

incomprehensible error message because there is no v.data() method. (For some reason,

gcc and clang do have a data() method, but it doesn’t return anything interesting, so the

error message is even more incomprehensible.)

We addressed the problem last time by introducing an overload of the constructor that is

active only for std::vector<bool> , and putting a static_ assert in the body with a

deceptively type-dependent expression so that the assertion wasn’t raised until the overload

was invoked.

I noted that Kenny Kerr came up with a simpler solution: Move the call to data() to a helper

function, and templatize that helper.

https://devblogs.microsoft.com/oldnewthing/20200313-00/?p=103559
https://devblogs.microsoft.com/oldnewthing/20200312-00/?p=103556
https://kennykerr.ca/
https://github.com/microsoft/cppwinrt/commit/0a9256c5b2bd75568c25130c819b383f8871c179

2/2

struct buffer_view
{
 template<typename C>
 buffer_view(std::vector<C> const& v) :
 data(get_data(v)), size(v.size() * sizeof(C)) { }

 // Imagine other constructors for std::array, etc.

 void const* data;
 std::size_t size;

private:
 void const* get_data(std::vector<C> const& v)
 {
 static_assert(!is_same_v<C, bool>,
 "Can't use std::vector<bool>. Try std::array instead.");
 return v.data();
 }
};

The static_ assert comes ahead of the call to v.data() , so it becomes the first error

message.

You could go even further and make it the only error message by adding some if

constexpr :

 void const* get_data(std::vector<C> const& v)
 {
 static_assert(!is_same_v<C, bool>,
 "Can't use std::vector<bool>. Try std::array instead.");
 if constexpr (!is_same_v<C, bool>) {
 return v.data();
 } else {
 return nullptr;
 }
 }

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

