
1/3

March 11, 2020

How can I create a type-dependent expression that is
always false?

devblogs.microsoft.com/oldnewthing/20200311-00

Raymond Chen

Giving a C++ lambda expression more than one operator() was an abuse of the language.¹

But one of the side effects of exploring ways to abuse the language is that during your

explorations, you may discover a useful trick.

One of the things I had to do was prevent compilation from succeeding if the lambda was

called incorrectly. I had a chain of if constexpr tests for the valid cases, and I needed to

put a static_assert in the else that said “You should never get here.”

auto lambda = [total](auto op, auto value) mutable
{
 using Op = decltype(op);
 if constexpr (std::is_same_v<Op, add_tax_t>) {
 total += total * value; // value is the tax rate
 return total;
 } else if constexpr (std::is_same_v<Op, apply_discount_t>) {
 total -= std::max(value, total); // value is the discount
 return total;
 } else {
 static_assert(false, "Don't know what you are asking me to do.");
 }
};

However, this does not compile because the static_assert fails immediately.

The reason is that the controlling expression for the static_assert is not dependent upon

the type of the arguments, and therefore it is evaluated when the lambda is compiled, not

when the lambda is invoked (and the implicit template instantiated).²

In order to defer the static_assert to instantiation, we need to make it type-dependent.

What is a type-dependent expression that is always false?

We could always make up our own:

https://devblogs.microsoft.com/oldnewthing/20200311-00/?p=103553
https://devblogs.microsoft.com/oldnewthing/20191107-00/?p=103071
https://devblogs.microsoft.com/oldnewthing/20190711-00/?p=102682

2/3

template<typename T>
inline constexpr bool always_false_v = false;

...

static_assert(always_false_v<Op>,
 "Don't know what you are asking me to do.");

but it feels weird creating a whole new variable template just to generate a fixed false

value.³ Maybe we can live off the land.

We could take advantage of the fact that sizeof is never zero.⁴

static_assert(!sizeof(Op),
 "Don't know what you are asking me to do.");

but this runs into problems if Op is an incomplete type or void . Now, the way we happen

to have written our code, an incomplete type and void are not possible because the type

corresponds to an actual parameter. But let’s look for a more general solution.

If the type is indeed incomplete or void , then the code will fail to compile, but the error

message will be confusing because the provided error text will not be used: The error

occurred before the compiler could get that far.

However, pointers to incomplete types or void are valid. So we could do this:

static_assert(!sizeof(Op*),
 "Don't know what you are asking me to do.");

A static assertion of a type-dependent expression that is always false is a handy thing to put

into templates, because it defers the assertion failure to the instantiation of the template.

Here, we used it in a potentially-discarded statement, so that the instantiation does not occur

when the statement is discarded.

We’ll find another use next time.

Bonus chatter: Billy O’Neal called out some gotchas with this approach, which I’ll take up

in a future entry.

¹ What some people call an abuse of the language others call a proxy object, such as the one

produced by std::vector<bool> ‘s [] operator.

² This does raise a confusing point in the C++ standard. According to the standard, the not-

used branch of an if constexpr is a discarded statement. This is the only place where the

term discarded statement appears in the standard. And it is never defined! The closest thing

to a definition is the sentence

https://twitter.com/MalwareMinigun

3/3

During the instantiation of an enclosing templated entity (Clause 17), if the condition is not
value-dependent after its instantiation, the discarded substatement (if any) is not instantiated.

which describes a discarded substatement. And it doesn’t really define what a discarded

substatement is. It just names one characteristic of discarded substatements.

I think the standard intended the sentence to be something like

A discarded statement is treated the same as a statement, except that during the instantiation of
an enclosing templated entity (Clause 17), if the condition is not value-dependent after its
instantiation, the discarded statement (if any) is not instantiated.

³ See the proposal for std::dependent_false (and committee sentiment) for further

discussion.

⁴ Empty base optimization and [[no_unique_address]] also scare me, because they can

lead to an object having an effective size of zero. I don’t want to get caught out if a future

version of the standard makes some subtle changes that lead to sizeof(T) == 0 in some

fringe cases.

Raymond Chen

Follow

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1830r1.pdf
https://github.com/cplusplus/papers/issues/572
https://en.cppreference.com/w/cpp/language/ebo
https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

