
1/3

March 6, 2020

Why do people take a lock around CreateProcess calls?
devblogs.microsoft.com/oldnewthing/20200306-00

Raymond Chen

If you look around, you often see people take a lock around their calls to the CreateProcess

function. Why do they do that? Isn’t the CreateProcess function thread safe?

Yes, the CreateProcess function is thread safe. But thinking about thread safety is the

right thing.

The issue is with inheritable handles.

When you ask for handles to be inherited, the CreateProcess inherits all the handles in

the process that are marked as inheritable. If you have multiple threads creating processes,

you run into trouble if each thread wants a different set of handles to be inherited. The two

threads each create their respective inheritable handles, and as a result, the handles get

inherited into both processes.

Prior to Windows Vista, the standard workaround was to use a mutex so that only one thread

at a time can go through the steps of

1. Creating inheritable handles.

2. Calling CreateProcess with bInheritHandles = true .

3. Closing the inheritable handles created in step 1.

Windows Vista introduced the PROC_THREAD_ATTRIBUTE_LIST , which I discussed some

time ago. This addresses the concurrency problem by allowing each call to CreateProcess

to specify a custom list of handles to be inherited. That way, you can have two threads calling

CreateProcess at the same time without interfering with each other’s inherited handles.

You don’t need a mutex any more.

There’s still a problem with this, though: It requires everybody to be playing the same game.

In order for a handle to be inherited, you not only have to put it in the

PROC_THREAD_ATTRIBUTE_LIST , but you also must make the handle inheritable. This

means that if another thread is not on board with the PROC_THREAD_ATTRIBUTE_LIST trick

https://devblogs.microsoft.com/oldnewthing/20200306-00/?p=103538
https://www.youtube.com/watch?v=gaI6kBVyu00
https://referencesource.microsoft.com/#System/services/monitoring/system/diagnosticts/Process.cs,f7fef721139b19c7
https://devblogs.microsoft.com/oldnewthing/20111216-00/?p=8873

2/3

and does a straight CreateProcess with bInheritHandles = true , it will inadvertently

inherit your handles.

A colleague of mine came up with a sneaky trick for addressing this new problem: Create a

dummy parent process and put the inheritable handles in there.

Here’s the basic idea:

Preparation

Create a process suspended. This process will never run. It is just a container for

handles.

Call this process the “helper” process. This process will end up helping us, despite the process

not actually doing anything!

Process creation: Do this each time you need to create a process with specific inherited

handles.

Create all the handles as non-inheritable. This ensures they don’t accidentally get

inherited if another thread (not written by you) calls CreateProcess .

Use DuplicateHandle to duplicate the handles you want to inherit into the helper

process, with bInheritHandles = true .

Add those handles to a PROC_THREAD_ATTRIBUTE_LIST .

Add the handle of the helper process as a

PROC_THREAD_ATTRIBUTE_PARENT_PROCESS , so that it acts as the nominal parent

process. Specifically, it is the source of inherited handles.

Call CreateProcess with this attribute list.

Use DuplicateHandle with DUPLICATE_CLOSE_SOURCE to close the handles you

injected into the helper process.

Cleanup

Terminate the helper process.

This technique works because the handles are never marked as inheritable in the main

process. Therefore, they can never be accidentally inherited. The only place the handles are

marked inheritable is in the helper process. Since the helper process is always suspended,

there’s no way that anybody in the helper process can call CreateProcess . The only way

somebody can accidentally inherit the handles is if they accidentally get a handle to your

helper process, which would be quite an accident.

You probably want to put the helper process in a “terminate on close” job, so that the cleanup

occurs automatically when your process terminates. That way, you don’t leak helper

processes if your main process crashes before it can clean up properly.

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

