
1/4

February 24, 2020

Why are there trivial functions like CopyRect and Equal-
Rect?

devblogs.microsoft.com/oldnewthing/20200224-00

Raymond Chen

If you dig into the bag of tricks inside user32 , you’ll see some seemingly-trivial functions

like CopyRect and EqualRect . Why do we even need functions for things that could be

done with the = and == operators?

Because those operators generate a lot of code.

Copying a rectangle would go like this:

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 07 mov ax, es:[bx] ; ax = source.left

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 07 mov es:[bx], ax ; dest.left = ax

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 47 02 mov ax, es:[bx+2] ; ax = source.top

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 47 02 mov es:[bx+2], ax ; dest.top = ax

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 47 04 mov ax, es:[bx+4] ; ax = source.right

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 47 04 mov es:[bx+4], ax ; dest.right = ax

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 47 06 mov ax, es:[bx+6] ; ax = source.bottom

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 47 06 mov es:[bx+6], ax ; dest.bottom = ax

This takes 54 bytes of code. It’s rather inefficient because the 8086 processor could indirect

only through the bx , bp , si , and di registers. The bp register was reserved for use as

the frame pointer, so that was off the table. The si and di registers were used as register

variables, so they are busy holding something important. That leaves bx as the only register

that can be used to dereference pointers.

https://devblogs.microsoft.com/oldnewthing/20200224-00/?p=103472

2/4

Since this is a 16:16 pointer, we also need a segment register, and the 8086 has only four

segment registers: cs (code segment), ds (data segment), ss (stack segment), es

(extra segment). Three of them have dedicated purposes, so the only one left is es . Even if

we could borrow si or di temporarily, we would still be bottlenecked on es .

If we move CopyRect to a function, then we can save a bunch of code:

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

53 push bx

06 push es

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

53 push bx

06 push es

9a xx xx xx xx call CopyRect

Only 15 bytes. Less than a third the size.

This was the era in which developers counted bytes, and any trick to save a few bytes was

worth considering, especially since you had “only” 256KB of memory.¹

And since copying and comparing rectangles were common operations, factoring the code

into a function saved a lot of bytes.

Of course, nowadays, it’s not a lot of code to copy a rectangle manually: An entire rectangle

fits into a single 128-bit register.

 mov eax, [sourcerect]

 movups xmm0, [eax]

 mov eax, [destrect]

 movups [eax], xmm0

Bonus code golf: We could have squeezed out a few instructions by moving two integers at

a time. This requires that the two rectangles be non-overlapping in memory (to avoid data

aliasing), but that’s probably a safe assumption because the original code didn’t work anyway

in that case.

int v[5];

(RECT)&v[0] = *(RECT*)&v[1]; // bad idea

Switching to moving two integers at a time doesn’t break anything that wasn’t already

broken, so let’s do it:

https://devblogs.microsoft.com/oldnewthing/20190827-00/?p=102809

3/4

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 07 mov ax, es:[bx] ; ax = source.left

26 8b 57 02 mov dx, es:[bx+2] ; dx = source.top

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 07 mov es:[bx], ax ; dest.left = ax

26 89 57 02 mov es:[bx+2], dx ; dest.top = dx

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 47 04 mov ax, es:[bx+4] ; ax = source.right

26 8b 57 06 mov dx, es:[bx+6] ; dx = source.bottom

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 47 04 mov es:[bx+4], ax ; dest.right = ax

26 89 57 06 mov es:[bx+6], dx ; dest.bottom = dx

That dropped us down to 42 bytes. It helps, but it’s still a lot of code.

If we’re willing to spill one of our other register variables, say, si , then we can squeeze it

even further.

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 8b 07 mov ax, es:[bx] ; ax = source.left

26 8b 57 02 mov dx, es:[bx+2] ; dx = source.top

26 8b 4f 04 mov cx, es:[bx+4] ; cx = source.right

26 8b 77 06 mov si, es:[bx+6] ; si = source.bottom

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 89 07 mov es:[bx], ax ; dest.left = ax

26 89 57 02 mov es:[bx+2], dx ; dest.top = dx

26 89 4f 04 mov es:[bx+4], cx ; dest.right = cx

26 89 77 06 mov es:[bx+6], si ; dest.bottom = si

Only 36 bytes. Getting better. But still twice as big as calling CopyRect , and it cost us a

register.

Another trick: Copy the rectangle through the stack.

c4 5e f0 les bx, [bp-10] ; es:bx -> source rect

26 ff 37 push es:[bx] ; push source.left

26 ff 77 02 push es:[bx+2] ; push source.top

26 ff 77 04 push es:[bx+4] ; push source.right

26 8b 77 06 push es:[bx+6] ; push source.bottom

c4 5e ec les bx, [bp-14] ; es:bx -> destination rect

26 8f 47 06 pop es:[bx+6] ; pop dest.bottom

26 8f 47 04 pop es:[bx+4] ; pop dest.right

26 8f 47 02 pop es:[bx+2] ; pop dest.top

26 8f 47 pop es:[bx] ; pop dest.left

Hm, same code size as using registers.

Okay, how about borrowing the ds register as well the si and di registers?

4/4

1e push ds

c5 7e ec lds di, [bp-14]

c4 76 f0 les si, [bp-10]

fc cld

a5 movsw

a5 movsw

a5 movsw

a5 movsw

1f pop ds

Thirteen bytes, yay, though it did cost us register spills that are not immediately visible.

This version is a tightrope walk because any operation that yields the processor risks

discarding the former ds segment, which will cause problems because we will restore it to

an invalid value and corrupt memory!

¹ The word “only” in in quotation marks because 256KB seems like a tiny amount of memory

today, but at the time, that was the maximum amount of memory you could get for an IBM

PC XT! At least not without resorting to expansion cards.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

