
1/2

February 5, 2020

The various patterns for passing C-style arrays across
the Windows Runtime ABI boundary

devblogs.microsoft.com/oldnewthing/20200205-00

Raymond Chen

The Windows Runtime supports C-style arrays. These are contiguous blocks of memory that

consist of multiple consecutive instances of the same type. (This is not to be confused with a

Windows Runtime vector, which is an interface that resembles an array but which does not

require any particular storage format.)

Arrays are kind of weird, because they aren’t “objects” (there is no identity), but they aren’t

scalars either (they are variable-sized). And there are multiple patterns for passing these

arrays across the ABI boundary, depending on who is allocating the memory, whether the

size is known to the caller, and whether the memory is being passed into or out of the

function.

PassArray: The caller passes a read-only array, and the implementation reads from it.

FillArray: The caller passes a write-only array, and the implementation fills it with

data.

ReceiveArray: The implementation allocates a block of memory for the array and the

caller receives a pointer to that block of memory, as well as the number of elements in

the array.

Here’s a table, since people tend to like tables.

 PassArray FillArray

ReceiveArray

Parameter Retu

Allocated
by

Caller Caller Callee Calle

Size Caller decides Caller decides Callee decides Calle

Freed by Caller Caller Caller Calle

Allocator Caller decides Caller decides COM allocator COM

https://devblogs.microsoft.com/oldnewthing/20200205-00/?p=103398

2/2

Policy Read-only Write-only Write-only Write

IDL

void M(T[]
value);

void M(
 ref T[] value);

void M(
 out T[]

value);

T[]

ABI

HRESULT M(
 UINT32 size,

 _In_reads_(size)
 T* value);

HRESULT M(
 UINT32 size,

 _Out_writes_all_(
 size) T*

value);

HRESULT M(
 Out UINT32* size,
 _Outptr_result_buffe
 *size) T** value)

C++/WinRT

void M(
 array_view<T

const>
 value);

void M(
 array_view<T>

value);

void M(
 com_array<T>&

 value);

com_
M();

C++/CX

void M(
 const Array<T>^

 value);

void M(
 WriteOnlyArray<T>^

 value);

void M(
 Array<T>&

 value);

Arra
M();

C#

void M(T[]
value);

void M(T[] value); void M(
 out T[]

value);

T[]

VB

Sub M(value As
T[])

Sub M(value As
T[])

Sub M(ByRef
value

 As T[])

Func
 As

JS

function M(value
 : TypedArray)

function M(value
 : TypedArray)

function M()
 : TypedArray

Func
 :
Typed

I gave the JavaScript prototypes in TypeScript notation so I could annotate the data types.

The case of an out parameter in JavaScript is a bit more complicated than it looks. I’ll save

that topic for another day.

Note that in the case of PassArray, the formal parameter at the ABI level is not declared

const T* , even though the buffer is read-only.

Update: “Freed by” and “Allocator” rows added later.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20221124-00/?p=107448
https://devblogs.microsoft.com/oldnewthing/20201203-00/?p=104507
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

