The various patterns for passing C-style arrays across
the Windows Runtime ABI boundary

B® devblogs.microsoft.com/oldnewthing/20200205-00

February 5, 2020

A
Raymond Chen

The Windows Runtime supports C-style arrays. These are contiguous blocks of memory that
consist of multiple consecutive instances of the same type. (This is not to be confused with a
Windows Runtime vector, which is an interface that resembles an array but which does not
require any particular storage format.)

Arrays are kind of weird, because they aren’t “objects” (there is no identity), but they aren’t
scalars either (they are variable-sized). And there are multiple patterns for passing these
arrays across the ABI boundary, depending on who is allocating the memory, whether the
size is known to the caller, and whether the memory is being passed into or out of the
function.

e PassArray: The caller passes a read-only array, and the implementation reads from it.

e FillArray: The caller passes a write-only array, and the implementation fills it with
data.

e ReceiveArray: The implementation allocates a block of memory for the array and the

caller receives a pointer to that block of memory, as well as the number of elements in
the array.

Here’s a table, since people tend to like tables.

ReceiveArray
PassArray FillArray Parameter Retu
Allocated Caller Caller Callee Calle
by
Size Caller decides Caller decides Callee decides Calle
Freed by Caller Caller Caller Calle
Allocator Caller decides Caller decides COM allocator COM

1/2

https://devblogs.microsoft.com/oldnewthing/20200205-00/?p=103398

Policy Read-only Write-only Write-only Write
void M(T[] void M(void M(T[]
value); ref T[] value); out T[]
IDL value);
HRESULT M(HRESULT M(HRESULT M(
UINT32 size, UINT32 size, Out UINT32* size,
In reads (size) Out writes_all_ (Outptr result buff
T* value); size) T* *size) T** value)
ABI value);
void M(void M(void M(com
arrav_view<T array view<T> com array<T>& | M();
const> value); value);
C++/WinRT | value);
void M(void M(void M(Arre
const Array<T>A WriteOnlyArray<T>A Arravy<T>& M();
C++/CX value); value); value);
void M(T[] void M(T[] value); void M(T[]
value); out T[]
C# value);
Sub M(value As Sub M(value As Sub M(ByRef Func
T[1) T[1) value As
VB As T[])
function M(value function M(value function M() Func
: TypedArray) : TypedArray) : TypedArray :
JS Type:

I gave the JavaScript prototypes in TypeScript notation so I could annotate the data types.
The case of an out parameter in JavaScript is a bit more complicated than it looks. I'll save
that topic for another day.

Note that in the case of PassArray, the formal parameter at the ABI level is not declared
const T* ,even though the buffer is read-only.

Update: “Freed by” and “Allocator” rows added later.

Raymond Chen

Follow

2/2

https://devblogs.microsoft.com/oldnewthing/20221124-00/?p=107448
https://devblogs.microsoft.com/oldnewthing/20201203-00/?p=104507
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

