
1/2

January 23, 2020

Windows Runtime delegates and object lifetime in
C++/CX, redux

devblogs.microsoft.com/oldnewthing/20200123-00

Raymond Chen

One thing to watch out for when using delegates in C++/CX is that invoking a delegate can

raise Platform::Disconnected Exception. If the delegate is inside a C++/CX event, then

the runtime will do the work of catching the Platform:: Disconnected Exception

exception, but if you are invoking the delegate manually, then it falls to you to deal with the

possibility that the delegate’s object no longer exists.

public delegate void MenuItemInvoked();
ref class CustomMenuItem
{
public:
 CustomMenuItem(MenuItemInvoked^ handler) :
 m_handler(handler) { }

private:
 MenuItemInvoked^ m_handler;

 void NotifyClientThatItemWasInvoked()
 {
 if (m_handler) m_handler();
 }
}

When the item is invoked, we invoke the handler, but it’s possible that the object that was

supposed to handle the event has already been destroyed. In that case, the runtime will fail to

resolve the weak reference to a strong reference, and it will raise the

Platform:: Disconnected Exception . The above code doesn’t handle that exception, so

it will crash.

What you should do is catch the Platform:: Disconnected Exception and use that as a

signal that the handler is no longer any good and shouldn’t be invoked any more.

https://devblogs.microsoft.com/oldnewthing/20200123-00/?p=103358
https://devblogs.microsoft.com/oldnewthing/20190521-00/?p=102505

2/2

 void NotifyClientThatItemWasInvoked()
 {
 try
 {
 if (m_handler) m_handler();
 }
 catch (Platform::DisconnectedException^)
 {
 // Handler is no good.
 // Don't bother invoking it any more.
 m_handler = nullptr;
 }
 }

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

