Can shrinking a std::string throw an exception?

=. devblogs.microsoft.com/oldnewthing/20200120-00

January 20, 2020

)
Raymond Chen

I had a C++ string that I wanted to truncate. Say, something like this:

void remove_extension(std::string& s)

{

auto pos = s.rfind('."');

if (pos != std::string::npos) {
s.resize(pos);

}
}

The question is whether this function can throw an exception. Can the call to resize throw
an exception when used to make a string smaller?

And the answer appears to be yes, at least in C++17.

The specification of the resize(n) method in C++17 says that in the case where n <=

size() , “the function replaces the string designated by *this with a string of length n

whose elements are a copy of the initial elements of the original string designated by
*this .”

In other words, the resize(n) method, when shrinking a string (or leaving the size
unchanged), behaves as if a new string is created, which replaces the current string. And
creating a new string may throw bad alloc .

Of course, implementations may use the as-if rule and resize the string in place, but the
standard does not require them to do so.

But wait, all is not lost. Because another way to shrink a string is to use the erase(n)
method.

e [basic.string]: basic_string is a contiguous container.

* [container.requirements.general] (11): Unless otherwise specified..., all container
types defined in this Clause meet the following additional requirements:

¢ [container.requirements.general] (11.3): No erase() ... function throws an
exception.

1/2


https://devblogs.microsoft.com/oldnewthing/20200120-00/?p=103349

e [string.erase]: Throws: length_error if n > max_size() .

There are a few things referenced in the “...” portion of
[container.requirements.general] (11), but they do not apply to basic_string .

Hooray, we can use the erase method to shrink the string and avoid an exception.

void remove_extension(std::string& s)
{
auto pos = s.rfind('.");
if (pos != std::string::npos) {
s.erase(pos);
}
}

Bonus chatter: It appears that the issue of resize() throwing an exception when
trimming was brought up?! by Stephan T. Lavavej and fixed by Tim Song in P1148Ro:

Starting in C++20, if you call the resize() method to shrink the string (or keep it the same
size), the behavior is defined in terms of erasure and therefore does not throw an exception.

1T could have written “raised” but I didn’t.2

2 Except that I just did.

Raymond Chen

Follow

2/2


https://twitter.com/StephanTLavavej
https://github.com/timsong-cpp
https://wg21.link/P1148
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

