
1/2

January 17, 2020

How can I turn a structured exception into a C++
exception without having to use /EHa, if I can constrain
exactly where the structured exception is coming from?

devblogs.microsoft.com/oldnewthing/20200117-00

Raymond Chen

Last time, we looked at how you can handle both structured exceptions and C++ exceptions

coming out of a plug-in. But the _set_se_translator  function requires that your code be

compiled with the /EHa. The customer was wondering if there was something that avoided

the need for /EHa .

One possibility is compiling parts of the program with /EHa  and parts without. This is

explicitly called out as not recommended. The reason is that code compiled with /EHs  (the

opposite of /EHa ) assumes that exceptions can be raised only by throw  statements, and

_set_se_translator  violates that rule because it allows C++ exceptions to be thrown by

any Win32 exception.

But all is not lost. In this case, we need the asynchronous-to-synchronous conversion only for

a specific block of code. If we can make sure no asynchronous exceptions escape into code

compiled with /EHs , we won’t violate the assumptions of /EHs .

HRESULT InvokeWithCustomExceptionTranslation( 
   CALLBACK_FUNCTION fn, /* other arguments */) 
{ 
 __try { 
   return fn(/* other arguments */); 
 } __except (GetExceptionCode() == MSVC_EXCEPTION ? 
             EXCEPTION_CONTINUE_SEARCH : EXCEPTION_EXECUTE_HANDLER) { 
   throw win32_exception(GetExceptionCode(), 
                         get_stack_trace(GetExceptionInformation())); 
 } 
} 

// InvokeCallback same as before 

If an asynchronous exception occurs during execution of the lambda, we check if it was a C++

exception. If so, then we let it go through so that the runtime can deal with it. Otherwise, we

convert it to a C++ exception on the spot.

https://devblogs.microsoft.com/oldnewthing/20200117-00/?p=103338
https://devblogs.microsoft.com/oldnewthing/20200116-00/?p=103333
https://msdn.microsoft.com/en-us/library/5z4bw5h5.aspx
https://msdn.microsoft.com/en-us/library/1deeycx5.aspx


2/2

It is important that there not be anything with a destructor in the __try  block, because the

asynchronous exception will bypass all destructors. Fortunately, the compiler will yell at you

if you make this mistake.

It is also important that this function handle all asynchronous exceptions (aside from C++

exceptions themselves), so that no asynchronous exception escapes into /EHs  code.

On the other hand, we hard-coded some secret knowledge of the compiler’s implementation,

namely, that MSVC_EXCEPTION  is the exception code used for C++ exceptions. If you are

running in an environment where the plug-in could be written in managed code, then you

will turn managed exceptions into win32_exception .

Which brings us back to what we had before: Using the _set_se_translator  function to

switch from /EHs  mode to /EHa  mode temporarily.

This is one of those cases where advice needs to come with a rationale: If you understand why

a rule exists, you can understand when you are in a case where the rule doesn’t apply.

And we are in one of those cases. The rason for the guidance against mixing /EHs  and

/EHa  in the same program is that you don’t want asynchronous exceptions to be converted

to synchronous exceptions when the calling code isn’t expecting it. By scoping the use of the

_set_se_translator  function to a single block of code, we can verify by inspection that

asynchronous exceptions never escape into code that doesn’t expect it.

This code needs to be carefully commented with a note that it needs to be compiled in a

specific way, and giving an explanation not only why that is necessary, but also why it is safe.

Raymond Chen

Follow

 

 

https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-2/compiler-error-c2712
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

