
1/3

January 10, 2020

Over-documenting TTM_RELAYEVENT and why it results
in a one-second periodic timer running as long as the
tooltip is visible

devblogs.microsoft.com/oldnewthing/20200110-00

Raymond Chen

If you create a Windows classic Win32 tooltip control, you get to specify whether you want

the control to subclass the window with which is associated, or whether you promise to

forward mouse messages with the TTM_RELAYEVENT message. The tooltip control uses these

mouse messages to help decide when the tooltip should be displayed and hidden.

If you agree to forward the messages yourself, then you may find that the tooltip control runs

a one-second periodic timer for as long as the tooltip is visible. What’s that for?

The timer is there so the tooltip can detect when the mouse has left the associated window.

When that happens, the tooltip hides itself because the mouse is no longer on the tooltip

target.

Why does it need a timer to do this?

Rewind to 1994. The tooltip control is being developed, and the TTM_RELAYEVENT message

gives the tooltip control insight into what the mouse is doing in the associated window. It

uses this information to detect that the mouse has dwelled inside the tooltip target for the

required amount of time, which causes the tooltip to appear. It also uses this information to

detect that the mouse has moved to another part of the associated window that is not part of

the tooltip target, at which point it can remove the tooltip.

But there’s another case that isn’t covered by this: The tooltip needs to know when the mouse

has left the tooltip target due to the mouse leaving the associated window entirely.

Since mouse messages are delivered to the window under the mouse cursor,¹ moving the

mouse out of the associated window entirely means that the associated window has nothing

to forward to the control via the TTM_RELAYEVENT message The only way for the tooltip to

know that the mouse has left the window entirely is for it to run a timer and poll the mouse

position.

https://devblogs.microsoft.com/oldnewthing/20200110-00/?p=103316
https://docs.microsoft.com/en-us/windows/win32/controls/tooltip-controls
https://docs.microsoft.com/en-us/windows/win32/controls/ttm-relayevent

2/3

That’s how things were in Windows 95.

The documentation for the TTM_RELAYEVENT message says

A tooltip control processes only the following messages passed to it by the TTM_RELAY-
EVENT message:

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MBUTTONDOWN
WM_MBUTTONUP
WM_MOUSEMOVE
WM_RBUTTONDOWN
WM_RBUTTONUP

All other messages are ignored.

Move forward to 1998. The TrackMouseEvent function was added. Among other things,

this allows a window to be notified when the mouse leaves the window outright. Great, the

tooltip control can take advantage of this so that it doesn’t need to poll the mouse to find out

whether it left the window. It can just wait for the WM_MOUSELEAVE message.

Except that it can’t.

Because the TTM_RELAYEVENT message already had documentation that said “All other

messages are ignored.” Programs were written based on the fact that only the messages given

in the documentation need to be forwarded to the tooltip control. If they got any other

message, they “optimized” their code by not bothering to forward it to the tooltip control.

This meant that the tooltip control would never get the WM_MOUSELEAVE message, since the

documentation told people that the tooltip control ignored the message.

So despite the availability of an efficient and battery-friendly way of detecting whether the

mouse has left a window, the tooltip control cannot use it because the documentation

revealed too much information, and people came to rely on that extra information.

If the documentation had merely said, “Forward all messages between WM_MOUSEFIRST and

WM_MOUSELAST to the tooltip control,” without enumerating which mouse messages the

tooltip control actually cares about, then it would have been possible to use the efficient

version, because everybody would be forwarding all mouse messages, which includes the new

WM_MOUSELEAVE message.

So things are bad because we wrote too much documentation. The documentation described

the implementation rather than the contract.

3/3

All is not lost, however.

If you set the TTF_SUBCLASS flag when you create a tooltip target, then you are telling the

tooltip control to subclass the window in order to grab the mouse messages. In this case, you

don’t need to (and shouldn’t) use the TTM_RELAYEVENT message. And if the tooltip control is

subclassing the window, it can see all the messages, and that includes the WM_MOUSELEAVE

message.

So use the TTF_SUBCLASS flag when you create your tooltip targets. Your tooltip will

respond more promptly to the user moving out of the window, and you won’t burn up the

user’s battery.

¹ Assuming that mouse capture is not in effect. Tooltips do not capture the mouse, because

that would prevent the user from using the mouse to do normal mouse things.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

