
1/7

January 3, 2020

Anybody who writes #pragma pack(1) may as well just
wear a sign on their forehead that says “I hate RISC”

devblogs.microsoft.com/oldnewthing/20200103-00

Raymond Chen

When you use #pragma pack(1) , this changes the default structure packing to byte

packing, removing all padding bytes normally inserted to preserve alignment.

Consider these two structures:

// no #pragma pack in effect.
struct S
{
 int32_t total;
 int32_t a, b;
};

#pragma pack(1)

struct P
{
 int32_t total;
 int32_t a, b;
};

Both structures have identical layouts because the members are already at their natural

alignment, Therefore, you would expect these two structures to be equivalent.

But they’re not.

Changing the default structure packing has another consequence: It changes the alignment of

the structure itself. In this case, the #pragma pack(1) declares that the structure P can

itself be placed at any byte boundary, instead of requiring it to be placed on a 4-byte

boundary.

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290

2/7

struct ExtraS
{
 char c;
 S s;
 char d;
};

struct ExtraP
{
 char c;
 P p;
 char d;
};

Even though the structures S and P have the same layout, the difference in alignment

means that the structures ExtraS and ExtraP end up quite different.

The ExtraS structure starts with a char , then adds three bytes of padding, followed by

the S structure, then another char , and three more bytes of padding to bring the entire

structure back up to 4-byte alignment. This ensures that an array of ExtraS structures will

properly align all of the embedded S objects.

By comparison, the ExtraP structure starts out the same way, with a single char , but this

time, there is no padding before the P because the P is byte-aligned. Similarly, there is no

trail padding at the end of the structure because the P is byte-aligned and therefore does

not need to be kept at a particular alignment in the case of an array of ExtraP objects.

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 1

ExtraS c padding s.total s.a s.b d p

ExtraP c p.total p.a p.b d

The effect is more noticeable if you have an array of these objects.

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

ExtraS c padding s.total s.a s.b d

ExtraP c p.total p.a p.b d c p.total

Observe that in the array of ExtraS objects, the s.total , s.a , and s.b are always

four-byte aligned. But in the array of ExtraP objects, there is no consistent alignment for

the members of p .

3/7

The possibility that any P structure could be misaligned has significant consequences for

code generation, because all accesses to members must handle the case that the address is

not properly aligned.

void UpdateS(S* s)
{
s->total = s->a + s->b;
}

void UpdateP(P* p)
{
p->total = p->a + p->b;
}

Despite the structures S and P having exactly the same layout, the code generation is

different because of the alignment.

UpdateS UpdateP

Intel Itanium

4/7

adds r31 = r32, 4
adds r30 = r32 8
;;
ld4 r31 = [r31]
ld4 r30 = [r30]
;;

add r31 = r30,
r31 ;;
st4 [r32] = r31

br.ret.sptk.many
rp

adds r31 = r32, 4
adds r30 = r32 8 ;;
ld1 r29 = [r31], 1
ld1 r28 = [r30], 1 ;;
ld1 r27 = [r31], 1
ld1 r26 = [r30], 1 ;;
dep r29 = r27, r29, 8,
8
dep r28 = r26, r28, 8,
8
ld1 r25 = [r31], 1
ld1 r24 = [r30], 1 ;;
dep r29 = r25, r29, 16,
8
dep r28 = r24, r28, 16,
8
ld1 r27 = [r31]
ld1 r26 = [r30] ;;
dep r29 = r27, r29, 24,
8
dep r28 = r26, r28, 24,
8 ;;
add r31 = r28, r29 ;;
st1 [r32] = r31
adds r30 = r32, 1
adds r29 = r32, 2
extr r28 = r31, 8, 8
extr r27 = r31, 16, 8 ;;
st1 [r30] = r28
st1 [r29] = r27, 1
extr r26 = r31, 24, 8 ;;
st1 [r29] = r26
br.ret.sptk.many.rp

Alpha AXP

5/7

ldl t1, 4(a0)

ldl t2, 8(a0)

addl t1, t1, t2
stl t1, (a0)

ret zero, (ra),
1

ldq_u t1, 4(a0)
ldq_u t3, 7(a0)
extll t1, a0, t1
extlh t3, a0, t3
bis t1, t3, t1
ldq_u t2, 8(a0)
ldq_u t3, 11(a0)
extll t2, a0, t2
extlh t3, a0, t3
bis t2, t3, t2
addl t1, t1, t2
ldq_u t2, 3(a0)
ldq_u t5, (a0)
inslh t1, a0, t4
insll t1, a0, t3
msklh t2, a0, t2
mskll t5, a0, t5
bis t2, t4, t2
bis t5, t3, t5
stq_u t2, 3(a0)
stq_u t5, (a0)
ret zero, (ra), 1

MIPS R4000

lw t0, 4(a0)

lw t1, 8(a0)

addu t0, t0, t1

jr ra
sw t0, (a0)

lwl t0, 7(a0)
lwr t0, 4(a0)
lwl t1, 11(a0)
lwr t1, 8(a0)
addu t0, t0, t1
swl t0, 3(a0)
jr ra
swr t0, (a0)

PowerPC 600

6/7

lwz r4, 4(r3)

lwz r5, 8(r3)

addu r4, r4, r5
stw r4, (r3)

blr

lbz r4, 4(r3)
lbz r9, 5(r3)
rlwimi r4, r9, 8, 16, 23
lbz r9, 6(r3)
rlwimi r4, r9, 16, 8, 15
lbz r9, 7(r3)
rlwimi r4, r9, 24, 0, 7
lbz r5, 8(r3)
lbz r9, 9(r3)
rlwimi r5, r9, 8, 16, 23
lbz r9, 10(r3)
rlwimi r5, r9, 16, 8, 15
lbz r9, 11(r3)
rlwimi r5, r9, 24, 0, 7
addu r4, r4, r5
stb r4, (r3)
rlwimi r9, r4, 24, 0, 31
stb r9, 1(r3)
rlwimi r9, r4, 16, 0, 31
stb r9, 2(r3)
rlwimi r9, r4, 8, 0, 31
stb r9, 3(r3)
blr

SuperH-3

7/7

mov.l @(4, r4), r2

mov.l @(8, r4), r3

add r3, r2

rts
mov.l r2, @r4

mov.b @(7, r4), r1
shll8 r1
mov.b @(6, r4), r2
extu.b r2, r2
or r2, r1
shll8 r1
mov.b @(5, r4), r2
extu.b r2, r2
or r2, r1
shll8 r1
mov.b @r4, r2
extu.b r2, r2
or r1, r2
mov.b @(7, r4), r1
shll8 r1
mov.b @(6, r4), r3
extu.b r3, r3
or r3, r1
shll8 r1
mov.b @(5, r4), r3
extu.b r3, r3
or r3, r1
shll8 r1
mov.b @r4, r3
extu.b r3, r3
or r1, r3
add r3, r2
mov.b r2, @r4
shlr8 r2
mov.b r2, @(1, r4)
shlr8 r2
mov.b r2, @(2, r4)
shlr8 r2
rts
mov.b r2, @(3, r4)

Observe that for some RISC processors, the code size explosion is quite significant. This may

in turn affect inlining decisions.

Moral of the story: Don’t apply #pragma pack(1) to structures unless absolutely necessary.

It bloats your code and inhibits optimizations.

Bonus chatter: Once you make this mistake, you can’t go back. You allowed the structure to

be byte-aligned, and if you remove the spurious #pragma pack(1) , you are making the

structure more strictly aligned, which will be a breaking change for any clients which used

the byte-packed version.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

