
1/2

December 23, 2019

C++ coroutines: The problem of the DispatcherQueue
task that runs too soon, part 1

devblogs.microsoft.com/oldnewthing/20191223-00

Raymond Chen

I was experiencing occasional crashes in C++/WinRT’s resume_foreground function when

it tries to resume execution on a dispatcher queue. Here’s a simplified version of that

function:

auto resume_foreground(DispatcherQueue const& dispatcher)
{
 struct awaitable
 {
 DispatcherQueue m_dispatcher;
 bool m_queued = false;

 bool await_ready()
 {
 return false;
 }

 bool await_suspend(coroutine_handle<> handle)
 {
 m_queued = m_dispatcher.TryEnqueue([handle]
 {
 handle();
 });
 return m_queued;
 }

 bool await_resume()
 {
 return m_queued;
 }
 };
 return awaitable{ dispatcher };
}

All you need to know about the Dispatcher Queue object is that the Try Enqueue method

takes a delegate and schedules it to run on the dispatcher queue’s thread. If it is unable to do

so (say, because the thread has already exited), then the function returns false . The return

https://devblogs.microsoft.com/oldnewthing/20191223-00/?p=103255

2/2

value of the Try Enqueue method is the result of the co_await .

Let’s walk through how this function is intended to work.

The resume_ foreground method returns an object that acts as its own awaiter. When a

co_await occurs, the coroutine first calls await_ready , which returns false , meaning

“Go ahead and suspend me.”

Next, the coroutine calls await_suspend . This method tries to queue the resumption of the

coroutine onto the dispatcher thread and remembers whether it succeeded in the m_queued

member variable.

Returning the value of m_queued means that if the continuation was successfully scheduled

(true), the coroutine remains suspended until it is resumed when the handle is invoked.

On the other hand, if the continuation was not successfully scheduled (false), then the

suspension is abandoned, and execution resumes immediately on the same thread.

Either way, when the coroutine resumes, it is told whether the rescheduling onto the

dispatcher thread succeeded.

Okay, now that you see how it is intended to work, can you spot the defect?

This code violates one of the rules we gave when we were getting started with awaitable

objects: Once you arrange for the handle to be called, you cannot access any member

variables because the coroutine may have resumed before async_suspend finishes.

And that’s what’s happening here: The dispatcher queue is running the lambda even before

the async_suspend can save the answer into m_queued . As a result, the code crashes (if

you’re lucky) or corrupts memory (if you’re not).

So we need to make sure the lambda doesn’t race ahead of async_suspend .

Next time, we’ll make our first attempt to fix this.

(The fact that I call it our first attempt gives you a clue that it may take more than one try.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

