
1/3

December 19, 2019

C++ coroutines: The co_await operator and the function
search algorithm

devblogs.microsoft.com/oldnewthing/20191219-00

Raymond Chen

So you’re following along Kenny Kerr’s blog and you get to the part where he uses co_await

on a time duration:

 co_await 5s;

so you try it:

#include <chrono>
using namespace std::chrono;

winrt::IAsyncAction Delay10Seconds()
{
 co_await 10s;
 co_return;
}

and you get the error message

no callable ‘await_resume’ function found for type ‘Expression’ where
Expression=std::chrono::seconds

We learned that this error message means that we ended up awaiting something that can’t be

awaited. We were hoping that the operator co_await would convert the 10s into an

awaiter, but it didn’t work. As a result, we ended up using the std:: chrono:: seconds

as its own awaiter, but since it doesn’t meet the requirements for an awaiter, you get an error.

As we learned last time, when you co_await an expression, one of the steps in obtaining an

awaiter is looking for a corresponding overloaded operator co_await that accepts the

expression. This search follows the usual mechanism for overloaded operators:

A search is conducted for an overloaded operator declared as a member of the class.

A search is conducted for an overloaded operator declared as a free function.

https://devblogs.microsoft.com/oldnewthing/20191219-00/?p=103230
https://kennykerr.ca/
https://kennykerr.ca/2018/03/13/cppwinrt-coroutines-thread-pool/
https://devblogs.microsoft.com/oldnewthing/20191218-00/?p=103221

2/3

Now, the std:: chrono:: seconds doesn’t implement operator co_await on its own,

so we must search for the overloaded operator as a free function.

Tht search for a free function includes the std::chrono namespace, thanks to argument-

dependent lookup. And it includes the namespace that is currently active, plus its parent

namespaces. And it includes any names that have been imported into those namespaces.

In the case of a duration, the relevant operator co_await is in none of those places. It’s in

the winrt namespace.

In order for it to be found, you need to be inside a namespace (or sub-namespace) of winrt ,

or you must have imported winrt::operator co_await into your namespace with a

using namespace ::winrt; statement.

If you operate entirely within C++/WinRT, then doing a using namespace ::winrt; is

probably not a big deal. But if your code straddles the C++/WinRT and ABI worlds (or worse,

straddles the C++/WinRT and C++/CX worlds, or heaven forfend, operates in all three

worlds), then blanket-importing the winrt namespace is probably not a good idea.

Fortunately, there’s a workaround.¹

You can use co_await winrt::resume_after(duration) as a drop-in substitute for

co_await duration; . This is literally what happens anyway, because the operator

co_await definition is

namespace winrt
{
 inline auto operator co_await(Windows::Foundation::TimeSpan duration)
 {
 return resume_after(duration);
 }
}

One lesson learned from this exercise is that it may not a great idea to define a co_await

operator outside the namespace of the object being awaited² because argument-dependent

lookup won’t find the operator if somebody tries to await the object from outside its home

namespace.

Another lesson learned is that if you do define a co_await operator outside the namespace

of the object being awaited, you should define a named function that does the work, and

make your co_await operator call the named function. That way, people who are not

using your namespace can still access the underlying functionality by using the named

function.

¹ Another workaround is to explicitly invoke the operator co_await from the winrt

namespace.

3/3

co_await winrt::operator co_await(duration);

Let us not speak of this workaround again.

² Corollary: It may not be a great idea to define a co_await operator for a language

standard type.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

