
1/4

December 13, 2019

C++ coroutines: Short-circuiting suspension, part 1
devblogs.microsoft.com/oldnewthing/20191213-00

Raymond Chen

At the start of this series, I gave the basic idea for how the compiler generates code for

co_await , but I left out some details for expository simplicity. There are some mysterious

steps called “We’re not ready to talk about this step yet.”

Now it’s time to talk about one of those steps.

It may be the case that when you get around to doing the await_ suspend , the thing your

custom awaiter is waiting for has already completed. It could be that the operation completed

synchronously, or that it was so fast that it finished even before you could schedule the

completion.

You don’t want to invoke the handle directly from your await_ suspend , because that

would run the coroutine continuation as a subroutine inside the suspension:

calculate x
obtain awaiter

save state for resumption
awaiter.await_suspend(handle);
handle()

 restore state after resumption
result = awaiter.await_resume();

 execution continues
coroutine finishes

handle() returns
return to caller

This can result in quite a significant accumulation of stack frames if there are a lot of

consecutive co_await s of already-completed operations.

https://devblogs.microsoft.com/oldnewthing/20191213-00/?p=103210
https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195

2/4

To avoid this problem, you can change your await_ suspend member to return bool .

Your implementation should check whether the operation has already completed. If so, then

do not schedule the handle for execution, but instead just return false , to indicate that

suspension should be abandoned and that execution should resume immediately. Otherwise,

schedule the handle for execution as usual, and return true .

Adding to our gradually-improving understanding of the compiler code generation of

co_await :

 calculate x
obtain awaiter

co_await (We’re not ready to talk about this step yet.)
save state for resumption
if (awaiter.await_suspend(handle)) ⇐
{

return to caller

[Invoking the handle resumes execution here]
}

restore state after resumption
result = awaiter.await_resume();

 execution continues

Let’s add fancy await_ suspend support to our resume_ in_ any_ apartment

function:

3/4

template<typename Async,

 typename = std::enable_if_t<

 std::is_convertible_v<

 Async,

 winrt::Windows::Foundation::IAsyncInfo>>>

[[nodiscard]] auto resume_in_any_apartment(Async async)

{

 struct awaiter : std::experimental::suspend_always

 {

 bool await_suspend(

 std::experimental::coroutine_handle<> handle)

 {

 if (async.Status() != Windows::Foundation::AsyncStatus::Started) {

 return false;

 }

 async.Completed([handler](auto&&...) { handler(); });

 return true;

 }

 auto await_resume()

 {

 return async.GetResults();

 }

 Async async;

 };

 return awaiter{ {}, std::move(async) };

}

If at the time of suspension, the asynchronous activity is not in the Started state, then that

means that it completed (successfully, with an error, or with cancellation). Therefore, there’s

no point waiting for it to complete. We can report it as already-completed and continue

execution directly.¹

This type of short-circuit is commonly seen when the await_ suspend function tries to

schedule the continuation, and the framework says, “Dude, it’s already done!” For example,

you might be performing an asynchronous read: If the ReadFile function returns TRUE ,

then the operation completed synchronously, and you can go straight to the resumption code.

There’s one last piece of the compiler code generation that is marked “We’re not ready to talk

about this step yet.” We’re just about ready to talk about that step. Next time.

¹ There is a small race window if the asynchronous activity completes just after we check

whether it has completed. Therefore, this change does not eliminate the stack accumulation

completely, but it greatly reduces its likelihood.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

