
1/2

December 6, 2019

In C++/WinRT, what happens when I treat an IInspectable
as or convert one to a bool

devblogs.microsoft.com/oldnewthing/20191206-00

Raymond Chen

Last time, we looked at weirdness in how C++/CX treats hat pointers in a bool context.

Fortunately, C++/WinRT is much less weird.

The IInspectable type supports a conversion to bool which tests whether the

underlying pointer is null. It also supports comparison against nullptr which tests the

same thing. And, unlike C++/CX, C++/WinRT uses this conversion for both explicit and

contextual conversions.

IInspectable p = winrt::box_value(false);
IInspectable q = winrt::box_value(false);

if (p) std::cout << 1;
if ((bool)p) std::cout << 2;
if (static_cast<bool>(p)) std::cout << 3;
if (p == q) std::cout << 4;
if (p == false) std::cout << 5;
if (!p) std::cout << 6;
if ((bool)p == (bool)q) std::cout << 7;

Condition What’s happening Result

if (p) Tests p against nullptr. prints 1

if ((bool)p) Tests p against nullptr. prints 2

if (static_cast<bool>(p)) Tests p against nullptr. prints 3

if (p == q) Compares two objects for identity. does not print

if (p == false) Not allowed (compiler error).

if (!p) Tests p against nullptr. does not print

if ((bool)p == (bool)q) Tests p and q against nullptr. prints 7

https://devblogs.microsoft.com/oldnewthing/20191206-00/?p=103191
http://devblogs.microsoft.com/oldnewthing/20191205-00/?p=103183

2/2

Note that the last case prints 7 but not for the reason you think. It’s not doing any unboxing

at all. It’s just checking whether both variables are non-null.

IInspectable t = winrt::box_value(true);
if ((bool)p == (bool)t) std::cout << 8; // prints 8!

Bonus chatter: There is a little quirk in the p == false case. My understanding is that

prior to C++11, false was a legal null pointer constant, but the rules in C++11 were

tightened so that false is no longer a null pointer context.

Microsoft’s Visual Studio C++ compiler, however, continues to accept false as a null

pointer constant, even in non-permissive mode. This means that if you’re using Microsoft’s

Visual Studio C++ compiler, the fifth row of the table is slightly different:

Condition What’s happening Result

if (p == false) false converted to IInspectable{ nullptr }
 and compared with p

does not print

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

