
1/3

December 5, 2019

In C++/CX, hat pointers are contextually convertible to
bool, but you can’t always static_cast them to bool

devblogs.microsoft.com/oldnewthing/20191205-00

Raymond Chen

C++/CX is a language extension intended to make consuming the Windows Runtime easier.

It is, however, no longer the C++ projection of choice. That honor now belongs to

C++/WinRT, which allows you to consume the Windows Runtime using standard-

conforming C++, no language extensions required.

For those of you stuck with C++/CX, here’s a little puzzle: What do these functions do?

bool Mystery1(Object^ o)
{
 if (o) {
 return true;
 } else {
 return false;
 }
}

bool Mystery2(Object^ o)
{
 return static_cast<bool>(o);
}

bool Mystery3(Object^ o)
{
 return bool(o);
}

bool Mystery4(Object^ o)
{
 return (bool)o;
}

You’d think these would all be equivalent, but they’re not.

https://devblogs.microsoft.com/oldnewthing/20191205-00/?p=103183

2/3

In the first mystery function, the hat pointer o is contextually converted to bool , and

that’s done by treating nullptr as falsy and anything else as truthy. In this respect, hat

pointers are like star pointers.

The remaining mystery functions take the object that o points to and attempt to unbox it to

a bool , and they all behave the same way:

If o is Then you get

(Object^)true true

(Object^)false false

nullptr NullReferenceException thrown

anything else InvalidCastException thrown

If you just want to know what happens and don’t care to understand the deep metaphysical

significance of those last two rows, I don’t blame you.

But that’s probably not why you’re here. You want to understand the weird crazy world that

led to the strange table above.

What’s going on is that a Object^ is really an IInspectable* under the hood. And cast

operations on IInspectable* are performed by doing a Query Interface . In this case,

we are casting to IBox<bool>* .

If you have a nullptr , then the attempt to call Query Interface results in a null pointer

dereference, hence the Null Reference Exception .

If the object is not a boxed bool , then the Query Interface fails with E_NO INTERFACE ,

which is expressed in C++/CX as an Invalid Cast Exception .

For me, the weird part is that there are two different categories of results: The contextual

conversion is different from the other conversions.

It means that you get weird puzzles like this:

3/3

Object^ p = false;
Object^ q = false;

if (p) std::cout << 1;
if ((bool)p) std::cout << 2;
if (static_cast<bool>(p)) std::cout << 3;
if (p == q) std::cout << 4;
if (p == false) std::cout << 5;
if (!p) std::cout << 6;
if ((bool)p == (bool)q) std::cout << 7;

What does this fragment print?

Condition What’s happening Result

if (p) Tests p against nullptr. prints 1

if ((bool)p) Unboxes p to bool. does not
print

if (static_cast<bool>

(p))

Unboxes p to bool. does not
print

if (p == q) Compares two objects for identity. does not
print

if (p == false) Boxes false then compares two objects for
identity.

does not
print

if (!p) Tests p against nullptr. does not
print

if ((bool)p ==

(bool)q)

Unboxes p and q and compares them. prints 7

Converting hat pointers to bool is very strange. Be glad you don’t have to deal with it.

Next time, we’ll look at C++/WinRT. It’ll be a lot less strange.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20191206-00/?p=103191
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

