
1/2

November 26, 2019

Yo dawg, I hear you like COM apartments, so I put a COM
apartment in your COM apartment so you can COM
apartment while you COM apartment

devblogs.microsoft.com/oldnewthing/20191126-00

Raymond Chen

Last time, we learned about COM apartments, with the two main flavors the single-threaded

apartment and the multi-threaded apartment. But it turns out you can also create

“miniature apartments” inside your apartment. (Is this like Airbnb for COM or something?)

This “miniature apartment” is formally known as a COM context and goes by the name

CLSID_ ContextSwitcher . You create one by calling

IContextCallback* context;

CoCreateInstance(CLSID_ContextSwitcher, nullptr,

 CLSCTX_INPROC_SERVER, IID_PPV_ARGS(&context));

You can then enter the context by calling the IContextCallback:: ContextCallback

method with a function you would like to execute inside that context. I’m going to postpone

further discussion of the IContextCallback:: ContextCallback method to another

article, because the IContextCallback:: ContextCallback method is kind of weird, and

untangling it will take a while.

Back to contexts. Why would you want to create a custom context anyway?

The original audience for custom contexts was Windows NT services which expose COM

objects to clients. Services also have to respond to shutdown requests. This puts them in a bit

of a pickle: They are required to clean up and unload from the process when given a

shutdown request,¹ but they also cannot unload (under penalty of access violation) until all

clients have released their references to objects in the service.

The solution is for the service to create a private little COM context for its objects. It then

enters the context and registers its object factory. When a client requests an object, the

factory will be called to produce the desired object. Since the factory is inside a context, the

resulting object will also be inside that same context. The client receives a proxy object that

talks to the object living inside the context.

https://devblogs.microsoft.com/oldnewthing/20191126-00/?p=103140
http://devblogs.microsoft.com/oldnewthing/20191125-00/?p=103135

2/2

Context

object⊸ ← proxy⊸ ←Client

When the server is told to shut down, it enters the context one last time to revoke its factory

and call CoDisconnectContext . The CoDisconnectContext function disconnects all

outstanding proxies from the underlying objects, erasing the arrow from the proxy to the

object:

Context

object⊸ proxy⊸ ←Client

The expectation is that disconnecting all the proxies will cause the reference counts of all the

objects in the context to drop to zero, and everything will be destroyed. The service can

destroy the context, and everything that had references to the service DLL is now gone, thus

allowing the service DLL to unload itself from memory.

Meanwhile, the clients are left holding a broken proxy. Any attempt to access the underlying

object from the proxy wll return the error RPC_ E_ DISCONNECTED .

Although Windows NT Services were the original audience for private contexts, they are not

the only valid use for them. Next time, we’ll look at another way they can become useful.

¹ This means that the shutdown “request” is more like a shutdown “demand”.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

