
1/3

October 18, 2019

C++/WinRT implementation extension points: abi_guard,
abi_enter, abi_exit, and final_release

devblogs.microsoft.com/oldnewthing/20191018-00

Raymond Chen

C++/WinRT provides a few extension points for implementations to customize default

behavior of inspectable objects.

When the last reference to an object is released, the object is destroyed. However, you may

need to do some special cleanup while the object is still alive. The classic example of this is

COM objects suffering double-destruction due to a temporary refcount, and the standard

solution is to artificially bump the reference count during destruction.

The C++/WinRT library takes the standard solution and goes a step further: An

implementation class can optionally implement a final_release method. If you provide

such a method, then instead of destructing the object immediately upon the release of the

final client reference, the C++/WinRT library calls your final_release method with the

last remaining reference to the object, in the form of a unique_ptr . The object is still alive

(it has not started destructing), so you can do normal things with it, like pass it to another

method that may temporarily bump its reference count. You can even co_await in your

final_release if you need to do some asynchronous work before letting the object finally

disappear.

Normally, the object will destruct when the unique_ptr destructs, but you can hasten its

death by calling unique_ptr.reset() , or you can postpone the inevitable by saving the

unique_ptr somewhere. You can read Kenny Kerr’s discussion of final_release for more

details.

The less commonly-used extension point is the abi_guard and its close friends

abi_enter and abi_exit .

If your implementation defines a method named abi_enter , then it will be called at the

entry to every projected interface method (not counting the methods of IInspectable).

Similarly, if you define a method named abi_exit , it will be called at the exit from every

such method, but will not be called if abi_enter throws an exception. (It will be called if an

exception is thrown by the method itself.)

https://devblogs.microsoft.com/oldnewthing/20191018-00/?p=103010
https://devblogs.microsoft.com/oldnewthing/20050927-00/?p=34023
https://devblogs.microsoft.com/oldnewthing/20050928-00/?p=34013
https://kennykerr.ca/2019/06/03/cppwinrt-deferred-destruction/

2/3

The calls to abi_enter and abi_exit are made with no parameters, and the return value

is discarded.

You might use abi_enter to, say, throw an invalid_state_error exception if a client

tries to use an object after it has been put into an unusable state, say, after a Shut Down or

Disconnect method. The C++/WinRT iterator classes use this feature to throw a

invalid_state_error exception in the abi_enter method if the underlying collection

has changed.

If the simple abi_enter and abi_exit methods aren’t fancy enough for you, you can

define a nested class named abi_guard , in which case an instance of the abi_guard will

be created on entry to each non- IInspectable projected interface method with a reference

to the object as its constructor parameter. The abi_guard is destructed on exit from the

method. You can put whatever extra state you like into the abi_guard class.

Basically, the deal is that the default abi_guard calls abi_enter at construction and calls

abi_exit at destruction. And the default abi_enter methods do nothing. You can

therefore plug in either at the abi_enter / abi_exit level, or at the abi_guard level.

Note that these guards are used only if you invoke the methods via the projected interface. If

you invoke the methods directly on the implementation object, then those calls go straight to

the implementation without any guards.

struct Thing : ThingT<Thing, IClosable>
{
 void abi_enter();
 void abi_exit();

 void Close();
};

void example1()
{
 auto thing = make<Thing>();
 thing.Close(); // calls abi_enter and abi_exit
}

void example2()
{
 auto thing = make_self<Thing>();
 thing->Close(); // does not call abi_enter or abi_exit
}

Note also that the guards are used only for the duration of the method call. If the method is a

coroutine, the guard applies only until the IAsyncXxx is returned, not until the coroutine

completes.

3/3

IAsyncAction CloseAsync()
{
 // guard is active here
 DoSomething();

 // guard becomes inactive once co_await starts,
 // at which point CloseAsync returns an IAsyncAction.
 co_await DoSomethingElseAsync();

 // guard is not active here
}

Guards are useful for specific cases like the “object that is no longer usable”, but their

applicability in general is somewhat limited because they don’t know what method is being

invoked. So you can’t do things like “If the object is not connected, then reject all method

calls except for Connect .”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

