
1/3

October 14, 2019

A common mistake when you try to create a C++ class
that wraps a window procedure: Saving the window
handle too late

devblogs.microsoft.com/oldnewthing/20191014-00

Raymond Chen

A common mistake when you try to create a C++ class that wraps a window procedure is

saving the window handle too late.

https://devblogs.microsoft.com/oldnewthing/20191014-00/?p=102992

2/3

// Code in italics is wrong.
class MyWindowClass
{
private:
HWND m_hwnd = nullptr;

static LRESULT CALLBACK StaticWndProc(
 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 MyWindowClass *self;
 if (uMsg == WM_NCCREATE) {
 LPCREATESTRUCT lpcs = reinterpret_cast<LPCREATESTRUCT>(lParam);
 self = static_cast<MyWindowClass*>(lpcs->lpCreateParams);
 SetWindowLongPtr(hwnd, GWLP_USERDATA,
 reinterpret_cast<LONG_PTR>(self));
 } else {
 self = reinterpret_cast<MyWindowClass*>(
 GetWindowLongPtr(hwnd, GWLP_USERDATA));
 }
 if (self) {
 return self->WndProc(uMsg, wParam, lParam);
 }
 return DefWindowProc(hwnd, uMsg, wParam, lParam);
}

LRESULT WndProc(UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch (uMsg) {
 ...
 default:
 return DefWindowProc(m_hwnd, uMsg, wParam, lParam);
 }
}

public:
void CreateTheWindow()
{
 ... RegisterClass() ...
 m_hwnd = CreateWindowEx(..., this);
}
};

This code follows the usual pattern for a window procedure wrapper: The this pointer is

passed as the creation parameter, and the WM_ NC CREATE message handler stashes the

creation parameter in the window extra bytes, thereby allowing the this pointer to be

recovered from the window handle when handling future messages.

However, there’s a problem with the above code. Can you spot it?

The problem is that it sets the m_hwnd member variable too late.

3/3

As written, the code doesn’t set the m_hwnd member variable until the Create Window Ex

function returns. But creating a window involves sending many messages.

For every message received during window creation, The WndProc member function runs

with a null m_hwnd . This means that when it calls Def Window Proc(m_hwnd, ...) , it’s

passing an invalid parameter.

Many of the messages sent during window creation are kind of important to pass through to

Def Window Proc . For example, if you neglect to pass WM_ NC CREATE to Def Window Proc ,

your window will not be properly initialized.

The solution is to set m_hwnd as soon as you learn what the window handle is.

 if (uMsg == WM_NCCREATE) {
 LPCREATESTRUCT lpcs = reinterpret_cast<LPCREATESTRUCT>(lParam);
 self = static_cast<MyWindowClass*>(lpcs->lpCreateParams);
 self->m_hwnd = hwnd; // save the window handle too!
 SetWindowLongPtr(hwnd, GWLP_USERDATA,
 reinterpret_cast<LONG_PTR>(self));
 }

Don’t wait for Create Window Ex to return. By then, it’s too late.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

