
1/2

October 3, 2019

What if I want the default value for a XAML dependency
property to be a mutable object?

devblogs.microsoft.com/oldnewthing/20191003-00

Raymond Chen

We saw last time that the default value for a XAML dependency property should be

immutable. One easy case of an immutable object is null . But what if you want the default

value to be a mutable object?

There’s no perfect answer for this, but the common solution is to set an explicit value in your

constructor.

class Light

{

 public Color Color { get; set; }; // read-write property

}

class Widget

{

...

Widget()

{
 InitializeComponent();

 FrontLight = new Light() { Color = Colors.Red };

}

public static readonly DependencyProperty FrontLightProperty =

 DependencyProperty.Register("FrontLight",

 typeof(Light), typeof(Widget));

// Provide convenient access to the dependency property.

public Light FrontLight {

 get => (Light)GetValue(FrontLightProperty);

 set => SetValue(FrontLightProperty, value);

}
}

We define the dependency property with null as its default value, taking advantage of the

overload that assumes that you’re okay with null being the default value.

https://devblogs.microsoft.com/oldnewthing/20191003-00/?p=102959
https://devblogs.microsoft.com/oldnewthing/20191002-00/?p=102950

2/2

But in our constructor, we explicitly set the value of the FrontLight property to a brand

new red light. By explicitly setting a value (known in XAML terminology as setting a local

value), we remove the case where XAML needs to produce a default value.

This works out great for most purposes, but there are some subtleties.

One is that the local value is fairly high in the precedence of value sources, sitting above

template properties, implicit styles, style triggers, template triggers, style setters, the default

style, and inheritance. Setting a local value means that the dependency property cannot be

styled, triggered, or inherited.

Another is that somebody might try to reset the property back to the default by calling

ClearValue . In that case, the value of the dependency property returns to the default value,

which we implicitly declared as null , rather than returning to the initial value we set in our

constructor (the red Light).

Raymond Chen

Follow

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/dependency-property-value-precedence#dependency-property-setting-precedence-list
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

