
1/5

October 2, 2019

The default value for a XAML dependency property
should be immutable

devblogs.microsoft.com/oldnewthing/20191002-00

Raymond Chen

When you define a custom XAML dependency property, one of the things you do is specify

the default value. You can do this by providing the default value directly:

DependencyProperty.Register("MyProperty",
 propertyType, ownerType,
 new PropertyMetadata(defaultValue));

UWP XAML also lets you provide a callback that produces the default value:

DependencyProperty.Register("MyProperty",
 propertyType, ownerType,
 PropertyMetadata.Create(createDefaultValue));

What’s not entirely obvious is that the default value statically provided at registration or

provided dynamically at runtime should be an immutable object, if you know what’s good for

you.

The default value of a dependency property is the value used if no value has been set: Nobody

has explicitly assigned a value, there is no active binding, no active animation, no active style,

nothing.

When XAML needs the default value of the dependency property, it uses the static default

property, if provided. Otherwise, it calls the create Default Value delegate, if provided.

Otherwise, it uses null .

For concreteness, let’s say that we have a Widget object and a dependency property of type

Light .

Let’s first look at the case where you provide a static mutable value for the default value of

the dependency property.

https://devblogs.microsoft.com/oldnewthing/20191002-00/?p=102950

2/5

// Code in italics is wrong.
class Light
{
 public Color Color { get; set; }; // read-write property
}

class Widget
{
...

public Widget()
{
 InitializeComponent();
}

// The default is a red light.
public static readonly DependencyProperty FrontLightProperty =
 DependencyProperty.Register("FrontLight",
 typeof(Light), typeof(Widget),
 new PropertyMetadata(new Light { Color = Color.Red }));

// Provide convenient access to the dependency property.
public Light FrontLight {
 get => (Light)GetValue(FrontLightProperty);
 set => SetValue(FrontLightProperty, value);
}
}

void Example()
{
 var a = new Widget();
 var b = new Widget();

 var aColor = a.FrontLight.Color; // aColor is Red
 var bColor = b.FrontLight.Color; // bColor is Red

 a.FrontLight.Color = Color.Blue;
 var bColor2 = b.FrontLight.Color; // bColor2 is Blue (!)
}

Since no custom value of Front Light has been set, a .FrontLight and

b .FrontLight both contain the default value, which is the red Light provided to the

Property Metadata constructor.

But since Light objects are mutable, the properties of that default value can be changed,

and those changes are visible to both a and b , because a .FrontLight and

b .FrontLight are the same object.

3/5

“Aha,” you may think, “that’s where the callback version comes in handy.” If you set up the

callback to produce a unique object, then a .FrontLight and b .FrontLight will be

different objects, and they won’t affect each other.

// Code in italics is wrong.
class Widget
{
...

public Widget()
{
 InitializeComponent();
}

// The default is a red light.
public static readonly DependencyProperty FrontLightProperty =
 DependencyProperty.Register("FrontLight",
 typeof(Light), typeof(Widget),
 PropertyMetadata.Create(() => new Light { Color = Color.Red }));

// Provide convenient access to the dependency property.
public Light FrontLight {
 get => (Light)GetValue(FrontLightProperty);
 set => SetValue(FrontLightProperty, value);
}
}

void Example()
{
 var aColor = a.FrontLight.Color; // aColor is Red
 var bColor = b.FrontLight.Color; // bColor is Red

 a.FrontLight.Color = Color.Blue;
 var bColor2 = b.FrontLight.Color; // bColor2 is Red

 var aColor2 = a.FrontLight.Color; // aColor2 is Red (!)

 if (a.FrontLight != a.FrontLight) TheWorldHasGoneMad(); // executes!
}

This time, we have the callback create a brand new red Light . When we evaluate

a .FrontLight .Color , the first thing that XAML needs to do is obtain the value of

a .FrontLight , and since nobody has set a value, XAML asks the callback to produce the

default. The callback creates a fresh red Light and returns it, and that brand new light is

the value of the a .FrontLight property. The Example function reads the color and gets

Red .

The same thing happens when you read the color from b .FrontLight .Color .

So far so good. The a and b objects each have separate FrontLight lights.

4/5

Okay, now things get interesting: When we try to change the color of a ‘s Front Light to

Blue , the assignment succeeds, and it doesn’t affect the color of b ‘s Front Light , but

when we try to read the color of a ‘s Front Light , we get Red again. What happened?

In the assignment a .FrontLight .Color = Color .Blue , the first thing that happens

is the fetch of the FrontLight property of the a object. And since we still haven’t set a

value for the FrontLight property, XAML uses the default value. And XAML does that by

calling the callback, and the callback creates a brand new Light . Until a value for the

FrontLight property is set, every attempt to read the FrontLight property will produce

a new red Light . In other words, the default value is not cached. XAML calls the callback

each time it needs the default value.

The code sets the color of this brand new light to Blue . But that brand new light isn’t being

saved anywhere. It doesn’t become the value of the FrontLight property. It ends up

orphaned, waiting for the next GC to clean it up.

Later, you read a .FrontLight .Color . Again, the first step is to retrieve the

FrontLight property from a , and since no value has been set yet, XAML asks the callback

to produce the default value, and the callback creates a brand new red Light . Every fetch of

the FrontLight property produces a brand new red Light .

This also explains why the final statement reports that the world has gone mad: The two

reads of the FrontLight property each produced a different red Light .

Producing a brand new object in response to the default value callback is a bad idea.

The intended purpose of the callback is to let you have a default value that is itself a

dependency object. Since dependency objects have thread affinity, you cannot use the same

object for all callers, because the callers may come from different threads. The callback lets

you look in some per-thread storage to obtain the correct object for that thread. In the worst

case, you can have your own private cache of objects indexed by thread.¹

Okay, but what if the dependency property’s type is a mutable type. One solution is to make

null the default value of the property. As immutable things go, null looks quite

immutable. Everybody who wants to change the FrontLight color must first provide a

FrontLight . But what if you want the default value to be non-null? We’ll look at this next

time.

¹ A cache with a bad policy is another name for a memory leak. One way to avoid this

problem is to put weak references in the cache, so that the objects remain alive only as long

as somebody is observing them. Scavenge dead slots in the dictionary periodically to clean

out the tombstones. For example, you might scavenge after a certain number of objects have

been added to the cache.

https://devblogs.microsoft.com/oldnewthing/20191003-00/?p=102959
https://blogs.msdn.microsoft.com/oldnewthing/20060502-07/?p=31333

5/5

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

