
1/2

August 29, 2019

On resolving the type vs member conflict in C++,
revisited

devblogs.microsoft.com/oldnewthing/20190829-00

Raymond Chen

Some time ago, I wrote about the type vs. member conflict, known informally as The Color

Color problem. I may have started in the deep end of the pool, so here’s a little bit of getting-

up-to-speed so that article might make more sense.

namespace Windows::UI::Xaml

{

 enum class Visibility { Collapsed, Visible };

 struct Style { /* ... */ };

 namespace Controls

 {

 struct UIElement

 {

 public:

 /* ... */

 // returns current visibility

 Windows::UI::Xaml::Visibility Visibility();

 // change visibility

 void Visibility(Windows::UI::Xaml::Visibility value);

 // returns current style

 Windows::UI::Xaml::Style Style();

 // change style

 void Style(Windows::UI::Xaml::Style value);

 };

 }

}

The fundamental problem here is that there is a name conflict between the type Style and

the method Style . There is also a name conflict between the type Visibility and the

method Visibility .

https://devblogs.microsoft.com/oldnewthing/20190829-00/?p=102816
https://devblogs.microsoft.com/oldnewthing/20190419-00/?p=102431

2/2

When used from within the UIElement class, or any class derived from it, the names

Style and Visibility refer to the methods UIElement:: Style and

UIElement:: Visibility , rather than to the types.

In language-speak, these are unqualified names, meaning that the name is just hanging out

by itself without any clues as to where to find it. You’re asking the compiler to figure out what

you’re referring to. And if you are using the name in the context of a class, the members of

the class have priority over names outside the class.

In other words, the method names Style and Visibility cause the type names to

become hidden. (Another name for this is shadowing.)

Some people tut-tut at this problem and declared, “You silly Windows people, using Pascal

case for your names. If you had followed the language standard naming pattern, this problem

wouldn’t even exist!”

The C++ language standard naming convention has the same problem. In the C++ standard

library, type names are snake_case , and method names are also snake_case . The

method

mutex_type* std::shared_lock::mutex() const noexcept;

has a name mutex that shadows the type name std::mutex . If you derive from

std::shared_lock and try to use a mutex , you’re going to get the method, not the type.

Even outside of Windows, type hiding is not a purely theoretical problem: The sys/stat.h

header file defines a structure called struct stat , as well as a function stat() . As a

result, you are forced to say struct stat in order to get the structure. Writing stat by

itself gets you the function.

So keep your eye open for the Color Color problem, even if your use case doesn’t involve

Color .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

